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Abstract

PL\Flummi is a research language for the compiler “Flummi”. To verify the correct-

ness of Flummi, we built an interpreter for PL\Flummi with the focal point of simplicity.

With this in mind, we chose an abstract syntax tree (AST) interpreter, instead of the

faster, but more complex, bytecode interpreter. Using a simple match statement, we

traverse the AST of any PL\Flummi program. Now, comparing our interpreters output

with Flummis output allows us to verify if Flummis output is correct. Rendering a few

images using a ray tracer, we tested the performance of our interpreter, concluding

that, except for very small inputs, our interpreter is significantly slower than Flummi.

This emphasizes the fact that our interpreter is built with simplicity in mind, not

performance. Comparing Flummis renders with those of our interpreter, we were

able to verify Flummis renders as correct.
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1
Introduction

Testing a compilers correctness is a crucial step in compiler development. In this bachelor

thesis, we build a simple interpreter for the language PL\Flummi to test the correctness of the

compiler “Flummi”.

Flummi is a compiler for iterative programs. It improves the performance of programs which

need to access a database multiple times by generating an equivalent SQL query and therefore

moving the whole program into the database. This reduces the number of times the program

has to access the database and therefore increases performance. Flummi has a more involved

implementation that can be split into two steps. It receives a control flow graph (CFG) as input,

which it first transforms into a query. This query is then evaluated inside the database. This

intermediate step leads to more opportunity for errors. The purpose of our interpreter is to

produce a result in one simple step so it can be tracked easily, ensuring correctness. This way,

the result of a program compiled by Flummi can be verified using our interpreter.

1.1 Choosing an interpreter type

There are different types of interpreters that can be used to interpret PL\Flummi. Considering

the fact that our interpreter needs to be as simple as possible, we can compare the two main

interpreter types there are: AST and bytecode interpreters. Both interpreter types require an AST

as input.

Abstract syntax trees represent the structure of the program in form of a tree. They are called

abstract syntax trees, because they leave out details of the program that are not integral to the

structure, like indentation or comments [1, 2], as seen in the highlighted portions in Listing 1.1.

For example, this simple program that adds 4 and 5 together.

1 # adding 4 and 5 together and emitting the result

2 CALL (§4§[], §5§[]) IN

3 FUN (a: §int§, b: §int§) -> §int§: '{

4 c: §int§;

5 c <- §{0} + {1}§[a, b];

6 EMIT §{0}§[c];

7 STOP

8 }

Listing 1.1: Simple function call in PL\Flummi with the arguments §4§[] and §5§[]. It adds the two
given arguments together. Details that are not essential to the structure of the program are
highlighted.
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Program

CALL (§4§[], §5§[]) IN

Function

FUN (a: §int§, b: §int§) -> §int§

Block

{…}

Declaration

c: §int§

1

Assignment

c <- §{0} + {1}§[a, b]

2

Emit

EMIT §{0}§[c]

3

Stop

STOP

4

Figure 1.1: Abstract syntax tree of the function call in Listing 1.1.

As their name implies, an AST interpreter traverses the AST of a program to compute its

results [1]. Bytecode interpreters also use ASTs, but they transform them into linear bytecode

before executing the bytecode to produce results [3]. The advantage of bytecode interpreters

over AST interpreters is that this linear byte code can be optimized more easily and therefore

executing it is often significantly faster than going through it as written in the input language [1].

This advantage is not relevant for our interpreter because our goal is to keep the interpreter

as simple as possible. The fact that bytecode interpreters first have to transform the AST to

bytecode is just another source for errors and goes against the simple one-step solution that

is needed. Iterating over an AST is more straightforward, which is why an AST interpreter is

preferred here.

2 Chapter 1 Introduction



2
PL\Flummi

PL\Flummi is a research language developed for the compiler “Flummi”. It is a procedural

language extension for SQL akin to extensions like PL/pgSQL, T-SQL and PL\SQL. Similar to

those extensions [4, 5, 6], PL\Flummi also implements features like conditional statements

and loops. Unlike all these extensions, PL\Flummi provides a lot more control. Each above-

mentioned extension is coupled with its own DBMS. Flummi is supposed to be flexible in its

use of DBMS, making it impossible to use an already established extension. On top of that,

developing your own language means being able to change and extend the language as needed.

In total, PL\Flummi provides all necessary features whilst keeping Flummi flexible.

2.1 Grammar

Program 𝑃 ≔ CALL (𝐸, …, 𝐸) IN 𝐹
Function 𝐹 ≔ FUN (𝑣 ∶ 𝜏, …, 𝑣 ∶ 𝜏) -> 𝜏 ∶ 𝑆
Statement 𝑆 ≔ {𝑆; …; 𝑆} Block

| 𝑣 ∶ 𝜏 Declaration

| 𝑣 <- 𝐸 Assignment

| IF 𝑣 THEN 𝑆 ELSE 𝑆 If

| LOOP 𝑣 𝑆 Loop

| CONTINUE 𝑣 Continue

| BREAK 𝑣 Break

| EMIT 𝐸 Emit

| STOP Stop

Expression 𝐸 ≔ §<SQL expression>§[𝑣, …, 𝑣]
Type 𝜏 ≔ §<SQL type>§

Variable 𝑣 ≔ <variable>

Figure 2.1: Grammar of PL\Flummi.

Going over PL\Flummis grammar we can break down what the language is capable of. Every

program 𝑃 consists of one function call with a function declaration 𝐹 inside. There cannot be

more than one function call in a program. Since function call and function declaration are

nested, there is also only one function declaration per program. The function body consists of

one or more Statements 𝑆.

Key procedural language features include conditional statements and loops. PL\Flummi has If

and Loop Statements. Inside the If Statement, it is important to note that the condition needs to

be an already declared and assigned variable 𝑣 instead of an Expression 𝐸. This has implications
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for the implementation which we discuss later in Chapter 3. Looking at the Loop Statement

including Break and Continue, a label is assigned to the loop. This way we can specify which

loop to break or continue when working with nested loops.

Instead of return values, PL\Flummi has emit values, which are generated by the Emit State-

ment. These statements are similar to the yield keyword inside generators, where every next()

generates a new value. In PL\Flummi the Emit Statement generates a new emit value each time

the statement is passed. Unlike with yield however, the control flow is not paused after each

Emit Statement, instead all emit values are generated with one function call. This can be imple-

mented in different ways, which we discuss in Chapter 3. When we combine the Emit Statement

with the Stop Statement, which ends the program execution, we can build something akin to a

return statement.

Variables 𝑣 in PL\Flummi have no scope. When statements start or end, declared variables

stay inside the environment and can be accessed until we stop the program execution. They do

have types, which means before each assignment we need to declare the variables type.

Expressions 𝐸 are part of what makes PL\Flummi, and in turn Flummi, very flexible. The SQL

expressions inside the paragraph signs are copied into the query that Flummi generates. We

only need to make sure to write an expression that can be evaluated by our DBMS of choice. The

rest of the query that Flummi generates uses SQL features from the SQL:1999 standard, which

most modern DBMSs support.

4 Chapter 2 PL\Flummi



3
Implementation

This chapter gives a more detailed explanation on how our interpreter is built. Since Flummi

is implemented in Python, and therefore its parser and AST are as well, it is easiest to write our

interpreter in the same language.

Before going over the implementation, we look at how Expressions are evaluated. To evaluate

our Expressions, we need to decide on a DBMS. A popular choice is PostgreSQL. But PostgreSQL

is a transactional DBMS [7], meaning it is more suited for many incoming queries instead of opti-

mizing a handful of complex ones. We would also need to set up a server-client connection [8].

All this is not optimal for our purposes. DuckDB, on the contrary, is an analytical [9] DBMS that

handles queries in-process [9] and in-memory [10], instead of on a server, making it very easy

to use [10]. This makes DuckDB a far better solution for our interpreter.

Then, going over the implementation of our interpreter, we will first look at how we need to

reconstruct the function call. Our interpreter can only traverse through Statements, and since

the function call is not a Statement, we need to transform it. Finally, we look over how our

interpreter traverses over the AST, going over each Statement.

3.1 Evaluating values with DuckDB

3.1.1 SQL expression to SQL statement

The SQL expressions contained within PL\Flummi cannot simply be given to DuckDB. Unlike SQL

statements, SQL expressions on their own cannot be evaluated by a DBMS. To transform the SQL

expression into a statement, we simply position a SELECT in front of it, changing it into a SELECT

statement. Considering that SELECT statements can be nested, we also wrap brackets around

the SQL expression, resulting in this final structure: SELECT (<SQL expression>).
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3.1.2 Placeholders

Because of implementation specifics inside Flummi, our SQL expressions contain Python string

formatting placeholders instead of SQL variable placeholders. Before the SQL statements can

be evaluated by DuckDB, the placeholders need to be changed to fit SQL standard. Placeholders

in Python have their numbers wrapped in curly brackets. In SQL, a dollar sign precedes the

number. Additionally, placeholder numbers in Python start with 0 whereas SQL standard starts

with 1. To tackle these changes, each Python placeholder inside the Expression constructs an

SQL placeholder in the shape of ($x :: type), making sure to start with placeholder number 1

instead of 0. Specifying the type of the placeholder is important, to ensure that our DBMS knows

exactly how we wish to treat the value. These placeholders then replace the Python placeholders

inside the SQL expression.

1 def expression_helper(self , expression: common.Expression[E]) -> str:

2 #transform free variables into correct SQL standard placeholders

3 placeholder_list = [

4 f"(${x + 1} :: {self.types[variable ]})"

5 for x, variable in enumerate(expression.free_variables)

6 ]

7 #replace the current Python placeholders

8 temp_expression = expression.source.format (* placeholder_list)

9 #run SQL statement and return it

10 return duckdb.execute(

11 f"SELECT ({ temp_expression })",

12 [self.env[x] for x in expression.free_variables]

13 ).fetchone ()[0]

Listing 3.1: Implementation of how Expressions with placeholders are restructured to be evaluated by
DuckDB.

For example, an SQL expression as seen in Listing 3.2 will be transformed into an SQL statement

as shown in Listing 3.3.

1 {0} NOT BETWEEN 0 AND 1

Listing 3.2: Example SQL expression.

1 SELECT (($1 :: real) NOT BETWEEN 0 AND 1)

Listing 3.3: Transformed SQL expression from Listing 3.2 that can now be evaluated by DuckDB.

3.2 From function call to Statement

For us to be able to traverse the whole program with our interpreter, we need to bring the

function call into a similar format as the rest of the program. The function call also includes

the nested function definition. They are not Statements as seen in Section 2.1 and therefore

cannot be traversed. Currently, a function call and definition include a number of arguments and

6 Chapter 3 Implementation



corresponding parameters. The easiest way to transform the function call into Statements is to

wrap a Block Statement around the function body that includes declarations and assignments

for each argument.

1 temp_block = proc.Block ([])

2 inputs = program.inputs.copy()

3 for name , variable_type in f.parameters.items ():

4 temp_declaration = proc.Declaration(name , variable_type)

5 temp_assignment = proc.Assignment(name , inputs.pop(0))

6 temp_block.statements.append(temp_declaration)

7 temp_block.statements.append(temp_assignment)

8 temp_block.statements.append(f.body)

Listing 3.4: Excerpt of the interpreter that transforms a function call to a series of Statement objects.

To show how exactly a program changes through this reconstruction, a program beforehand

looks something like this.

1 CALL (§4§[], §5§[]) IN

2 FUN (a: §int§, b: §int§) -> §int§: {

3 c: §int§;

4 d: §int§;

5 d <- §3§[];

6 c <- §{0} + {1} + {2} + {1}§[a, b, d];

7 EMIT §{0}§[c];

8 STOP

9 }

Listing 3.5: An example function call that adds a few variables together including two that are given
as arguments.

After being restructured, the function call and definition is gone and only Statements are left.

1 {

2 a: §int§;

3 a <- §4§[];

4 b: §int§;

5 b <- §5§[];

6 {

7 c: §int§;

8 d: §int§;

9 d <- §3§[];

10 c <- §{0} + {1} + {2} + {1}§[a, b, d];

11 EMIT §{0}§[c];

12 STOP

13 }

14 }

Listing 3.6: Transformed example from Listing 3.5 that can now be processed by the match statement.

3.2 From function call to Statement 7



3.3 Traversing the AST

With all the preparation out of the way, traversing the program can be done using a simple match

statement over the AST, which now only holds Statement objects.

3.3.1 Assignment and Declaration

Both assignments and declarations are stored in global dictionaries. Because of PL\Flummis

scoping, as discussed in Chapter 2.1, variables will remain inside these dictionaries until the

program execution stops.

1 env: dict[common.Variable , any] = {}

2 types: dict[common.Variable , any] = {}

Listing 3.7: Implementation of dictionaries that hold variable values and types.

We need to declare the type of a variable, before the variable can be assigned. Assigning a

variable is not as easy as assigning the Expression to the variable inside the dictionary. We need

to evaluate the Expressions first, in case the program includes nested Expressions.

1 case proc.Declaration(variable , type):

2 self.types[variable] = type.source

Listing 3.8: match case for Declarations.

1 case proc.Assignment(variable , expression):

2 self.env[variable] = self.expression_helper(expression)

Listing 3.9: match case for Assignments.

3.3.2 Emit

Since the Emit Statement works similarly to the yield keyword in generators, as explained in

Section 2.1, there are different ways to collect the various emit values. If we just print the values

each time an Emit Statement is passed, we cannot return them at the end of the program

execution. Instead, we collect the values inside a list which is returned and printed after the

program has finished execution. By returning the list, it is possible to further work with the values

outside the interpreter without having to change the implementation of the Emit Statement

inside the interpreter itself.

1 return_list: list[any] = []

Listing 3.10: List that will be returned after a program is stopped, which holds all emitted values.

Similar to Assignments, we evaluate Emit Statements using DuckDB before storing them inside

the return_list.

1 case proc.Emit(to_emit):

2 result = self.expression_helper(to_emit)

3 self.return_list.append(result)

Listing 3.11: match case for Emit.

8 Chapter 3 Implementation



3.3.3 If

Unfortunately, the If Statement has nothing new or exciting to demonstrate. Since the condition

is a variable, which is evaluated on assignment, we simply access its value from env. With Pythons

if statement, we then use the value to determine which branch to continue.

1 case proc.If(condition , t_branch , f_branch):

2 if self.env[condition ]:

3 self.statement_helper(t_branch)

4 else:

5 self.statement_helper(f_branch)

Listing 3.12: match case for If Statements.

3.3.4 Using exceptions for Stop, Loop, Continue and Break

To implement the functionality of the Stop and Loop Statements, and by extension Continue

and Break, we use exceptions to move up the call stack. Three different new exception types are

declared to aid with this.

1 class LoopBreak(Exception): ...

2 class LoopContinue(Exception): ...

3 class Stop(Exception): ...

Listing 3.13: All newly defined exceptions inside the interpreter to aid with Loop and more specifically
Break and Continue Statements as well as Stop Statements.

Starting with the implementation of Loop, Continue and Break. If we encounter a CONTINUE

or a BREAK inside a Loop Statement, we raise the corresponding exceptions LoopContinue or

LoopBreak. Together with the exception, we forward the label of the loop, which makes it

possible to break or continue specific loops instead of just the loop in the current nesting level.

The exception keeps getting raised through the possibly nested loops, and using Pythons while

loop for the implementation, we can break or continue the labelled loop using Pythons break

and continue keywords.

3.3 Traversing the AST 9



1 case proc.Loop(name , body):

2 while(True):

3 try:

4 self.statement_helper(body)

5 except LoopBreak as e:

6 if name == e.args [0]:

7 break

8 else:

9 raise e

10 except LoopContinue as e:

11 if name == e.args [0]:

12 continue

13 else:

14 raise e

15 case proc.Continue(name):

16 raise LoopContinue(name)

17 case proc.Break(name):

18 raise LoopBreak(name)

Listing 3.14: match case for Loop, Continue and Break Statements.

The implementation of Stop is much easier and follows the same principle. Inside the match

statement we raise the Stop exception, which bubbles up the call stack and is then caught inside

interpret causing the return_list to be returned. This marks the end of the program execution.

1 case proc.Stop():

2 raise Stop

Listing 3.15: match case for Stop.

1 try:

2 self.statement_helper(first_function_statement)

3 except Stop:

4 return self.return_list

Listing 3.16: try: … except … statement, which initiates the match statement and returns the
return_list after catching the Stop exception caused by the Stop Statement.

10 Chapter 3 Implementation



4
Evaluation

Writing a simple interpreter comes at the expense of performance. Looking back at Chapter 1,

we choose an AST interpreter for its simplicity instead of the faster bytecode interpreter. In Chap-

ter 3, we wrote a simple implementation to traverse the AST, making for a clear implementation

but sacrificing performance. Now we want to see how bad the performance actually is and test

if we can verify Flummis correctness.

Table 4.1: Image renders and performance using our interpreter and Flummi. Flummi (1-by-1) rendered
the image by compiling a new query for each pixel. Flummi (batched) made a single query
for the whole image. Since both outputs are the same, only the rendered image of Flummi
(batched) is included. The difference column shows if there are differences between the
renders of Flummi and our interpreter. Performance is measured inmilliseconds. The number
in brackets indicates how much slower the measured time is compared to the time of the
interpreter.

Image Size Renders Difference Performance

Interpreter Flummi (batched) Interpreter Flummi (batched) Flummi (1-by-1)

1 × 1 1 217ms 8 918ms (7.33×) 9 857ms (8.10×)

2 × 2 5 449ms 8 520ms (1.56×) 33 189ms (6.09×)

4 × 4 25 115ms 13 459ms (0.54×) 151 887ms (6.05×)

8 × 8 92 543ms 14 306ms (0.16×) -

16 × 16 351 077ms 16 550ms (0.05×) -

32 × 32 1 446 270ms 16 555ms (0.01×) -

Using a ray tracer written in PL\Flummi, we render images, measuring the performance of our

interpreter and Flummi. Flummi can render the images pixel by pixel, running a new query every

time, or use its batch function to run only one query for all pixels. Surprisingly, our interpreter

is better at small image sizes than Flummi, both 1-by-1 and even batched. Flummi (1-by-1) is

significantly slower than both our interpreter and Flummi (batched), not improving even with

bigger image size, which is why it is excluded from image size 8 × 8 and onwards. Flummi

(batched) overtakes our interpreter at bigger image sizes, showing that Flummi scales well for

larger program inputs, unlike our interpreter.
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Looking at the renders and the difference image, we can determine if Flummis renders are

correct. The difference image shows if the two renders differ. It is a ppm-file with two color-

component values, 0 and 1. When the color-component value of a pixel in the two renders

deviates, our respective difference image color component value is 1, otherwise it is 0. This leads

to vibrant colors when there are even small differences in color-component values, making it

easy to see.

Figure 4.1: Difference image for two
renders with deviating
color-component values
for each pixel.

Figure 4.2: Difference image for two
renders with the same
color-component values
for each pixel.

For our renders, no difference image shows any deviating values, meaning our interpreter and

Flummi produced the same output. Therefore, Flummis renders are correct.
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5
Conclusion

5.1 Summary

To summarize this work concisely, we built an AST interpreter for the language PL\Flummi to

test the correctness of the compiler “Flummi”. Our interpreters defining feature is being simple.

PL\Flummis trait of being a research language allows for more control over its features, and

therefore works well for a flexible compiler like Flummi. To evaluate Expressions, we use DuckDB

for its simplicity and analytical approach to query optimization. The main implementation

feature of the interpreter is the match statement, which traverses the AST of the program. To test

our interpreter, we rendered images, concluding that Flummis output for those images is correct.

5.2 Future Work

Planned extensions for PL\Flummi include recursion and parallel computing. Currently, only

one function call can be made per program. In the future we want to be able to make multiple

function calls, including recursion. Parallel computing forks a task, so parallel processing is

possible. Once these language features are implemented into PL\Flummi, we will extend this

interpreter to continue verifying Flummis correctness.
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