
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik

Database Systems Research Group

Bachelorthesis Computer Science

Extending ByePy with geometric types and operators

Zora Lucia Pidde

11.04.2023

Examiner

Torsten Grust

Co-Examiner

-

Supervisor

Tim Fischer

Zora Lucia Pidde:
Extending ByePy with geometric types and operators
Bachelorthesis Computer Science
Eberhard Karls Universität
From 01.02.2023 to 11.04.2023

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorthesis selbständig
und nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle
Stellen, die dem Wortlaut oder dem Sinne nach anderen Werken entnom-
men sind, durch Angaben von Quellen als Entlehnung kenntlich gemacht
worden sind. Diese Bachelorthesis wurde in gleicher oder ähnlicher Form
in keinem anderen Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Zora Lucia Pidde

iii

Acknowledgement

I want to thank my parents, Manuela Pidde and Werner Baumgärtel, for their con-
tinuous support throughout my life and many more things. I also thank Steffen Pohl
for being there and having an open ear and André Greubel for his friendship.

Acknowledgement v

Abstract

ByePy frontend and Apfel backend represent a compiler translating Python code
to SQL statements that was developed by the database systems research group from
the University of Tübingen. Through this process, the compiler could realise runtime
savings in executing code containing both imperative language and SQL. Nonethe-
less, the ByePy currently only supports some basic Python datatypes such as inte-
gers, floats, strings, booleans, composite types, and arrays. This thesis enhances the
applicability of the frontend by including PostgreSQL’s geometric datatypes (point,
box, circle, line segment, line, path, and polygon) as well as corresponding opera-
tors, functions and typecasts. Preceding the enhancement of the compiler, a Python
library is developed to mirror PostgreSQL’s geometric behaviour.

Abstract vii

Contents

Acknowledgement v

Abstract vii

Acronyms xi

1 Introduction 1

2 Background 3
2.1 Previous Work . 3
2.2 Technical Background . 4

3 Compilation Rules 7
3.1 Python Library . 7
3.2 Typing Rules . 9

3.2.1 Constructors & Functions . 10
3.2.2 Attribute Access . 11
3.2.3 Methods . 12
3.2.4 Operators . 15

3.3 Lowering Rules . 17

4 Practical Demonstation 23

5 Discussion 25

Bibliography 27

Contents ix

Acronyms

ANF Administrative Normal Form
AST Abstract Syntax Tree
GIS Geographic Information Systems
RDBMS Relational Database Management System
SQL Structured Query Language
SSA Static Single Assignment Form
UDF User Defined Function

xi

1
Introduction

Mastery of Structured Query Language (SQL) remains a critical requirement in data manage-
ment and analysis. In a survey of professional developers, the top 4 named database systems
were all based on SQL [1].

SQL belongs to the declarative programming paradigm, where the focus is on describing the
problem to be solved [2]. Then again, many programmers are more familiar with languages of
the imperative paradigm, where primarily the way to achieve a goal is expressed. Moreover, im-
perative coding concepts like function definition and variable assignment are useful imperative
programming constructs that increase code reusability and simplify the programming process.
The mismatch in paradigm and relevant coding structures may render working with Relational
Database Management Systems (RDBMSs) difficult to many programmers and hence discourage
greater use.
In order to facilitate the use of imperative programming concepts in SQL applications the
Database Research Group at the University of Tübingen has developed the Apfel compiler with
a Python frontend ByePy. For simplicity, throughout this thesis, the combination of both will
be referred to as ’the compiler’, while the backend will be explicitly named Apfel-compiler. The
compiler translates entire Python programs directly into simple SQL statements. It allows to
create data-intensive programs imperatively in Python and obtain programs able to run directly
on SQL database systems. This approach results in considerable run time savings compared to
approaches alternating between imperative interpretation and SQL execution.
Python is a promising candidate for an imperative input language to the compiler. Surveys show
Python to be a popular programming language, ranking in the top 5 in many indices [1, 3, 4, 5].
Data analysis was named as the top purpose for using Python, while Python developers ranked
SQL as the top language for web and data science. A widespread system for data administration
is PostgreSQL [1, 6]. Python users, in particular, named it as their top database [7]. Therefore,
the employed combination of Python and PostgreSQL has great potential. However, ByePy cur-
rently only supports basic Python language features such as base types, arrays and composite
types (detailed description in Chapter 2), while some RDBMSs offer other data types tailored for
specific types of problems.
One prominent category of algorithms benefiting strongly from the inclusion of additional types
in the compiler is that of computational geometry since the occurrence of large amounts of ge-
ometric data requires efficient data management. As RDBMSs are designed to enable this, it is
advantageous for geometric algorithms to utilise such a system.
On the other hand, such algorithms often are described imperatively and exhibit complex con-
trol flow, which makes direct implementation in SQL difficult. By integrating geometric data

1

types in ByePy, various new applications for the compiler may be enabled through the use of
geometric shape constructs. Applications of computational geometry can be found in computer
graphics, Geographic Information Systems (GIS), and robotics, amongst others [8]. Computa-
tional geometry is hence an indispensable part of modern digital society. Through inclusion of
geometric structures in ByePy, computations involving large amounts of geometric data could be
more easily programmed using imperative Python and could be greatly accelerated, as ByePy’s
runtime savings might be realised for them.
To enable these advantages, the objective of this thesis is to extend ByePy with geometric types.
Since the compiler is adapted to PostgreSQL, the geometric types (point, box, circle, line seg-
ment, line, path, polygon), operators and functions integrated in ByePy are those included in
PostgreSQL.
In the upcoming chapters, the compiler will be analysed more closely and the steps taken to
extend its applicability are shown. First, we give a short overview of the previous work which
lead to the compiler’s construction and its working mechanisms (Chapter 2). In the next step,
we summarise the structure of a newly created Python library matching PostgreSQLs geometric
constructs and define type-checking and transformation rules while explaining the design deci-
sions leading to their composition (Chapter 3). A working example illustrates the application of
the rules to Python code. The practicality of our ByePy extension for relevant algorithms in com-
putational geometry is evaluated in Chapter 4. Finally, the conclusion (Chapter 5) recapitulates
the main findings and discusses future options for the compiler with geometric shapes.

2 Chapter 1 Introduction

2
Background

This chapter gives a brief overview of the previous work that contributed to the development
of the compiler. It gives the reader a better understanding of the steps taken to extend the
compiler by explaining the motivation for its construction and its operating mechanisms.

2.1 Previous Work

Currently, many solutions to provide imperative features for SQL-based systems are in existence.
They range from the definition of User Defined Functions (UDFs) to actually integrating impera-
tive languages with the database [9].
Nonetheless, such solutions are not without problems of their own. Particularly the poor per-
formance of such solutions is lamented [10, 11, 12, 13, 14, 9]. Substantial runtime overhead
discourages wider use. The overhead accumulates in practice through many context switches
during the execution, where imperative and declarative code needs to be compiled or inter-
preted in turns. This problem is even more pointed if many database accesses via embedded
subqueries are in action. Each subquery execution requires individual instantiation, execution
and teardown, even for the same subquery if executed repeatedly as within looping control flow
[12]. At the same time, precisely employing a mixture of SQL and imperative code is considered
particularly desirable as it improves the readability and maintainability of programs [10].
To preserve the benefits of imperative coding while improving performance, Ramachandra and
Colleagues [10] opted to transform entire UDFs into relational algebraic expressions and inline
them into the calling query. They modelled a framework named Froid which is able to transform
complete programs with branching control flow into SQL.
Following their line of work, the Database Research Group of the University of Tübingen de-
veloped their own compiler for transforming arbitrary complex and even looping control flow.
Throughout several releases, they refined their framework, finally even providing the ByePy fron-
tend to compile entire Python programs into plain SQL.
Both frameworks, Froid and ByePy, achieve runtime savings by avoiding context switches, thus
supporting the approach of converting imperative constructs directly to SQL.
Runtime comparisons determining the scale of time savings were executed by all the publica-
tions mentioned above. Each of them found substantial runtime improvements to be realised
by the use of their respective framework. Particularly noteworthy are [10, 12, 14] as they test
their applications on a vast amount of programs. They found speedups from about a factor of
two [12] to multiple orders of magnitude [10]. Their results underline the usefulness of their
concept, which is to be enhanced to a larger input set in this thesis.

3

Building upon this work, we aim to enable those benefits for programs involving geometric
shapes. To do so, we enable the existing ByePy-frontend to translate geometric constructs to
SQL. The following section summarises the current state and mechanisms of ByePy to empha-
sise which parts require modification to allow the processing of geometric structures.

2.2 Technical Background

The purpose of this section is to clarify preconditions for the use of the compiler with shapes
integration and present its internal composition. The latter promotes an understanding of in-
ternal mechanisms, which is a prerequisite for extension.
Technical restrictions must be considered for the use of ByePy, and hence our geometric shapes
compilation. Most importantly, the PostgreSQL-Version chosen to execute the compiled code
must be 11 or higher in order to support geometric types. This prerequisite is not necessary for
the use of ByePy without shapes integration.

As described in [13, 14, 9], a Python program to be compiled by ByePy may use:

• looping and iteration

• control flow statements

• conditional statements

• arbitrarily nested assignment and reference

• lists, indexed access and slicing, stateful list methods

• dictionaries

• specific statements on containers (e.g. delete statement)

• a collection of builtin operators and functions

• falsifiability of builtins

• nested None disambiguation

• embedded read-only queries

Note that the compiler currently does not support the use of recursion, general nested func-
tion calls (i.e. ”helper functions”), and embedded queries that perform write-operations on the
database. Also, the set of assisted builtin functions is restricted to len, random, abs, ceil, float,
floor, copysign, min, max, and sqrt. To enable ByePy-transformation, it must be abstained from
using other Python builtins.
The current compiler version will be sketched to identify the compiler stages that require ad-
ditional structure to process the new types and operations. Special attention is hereby given
to the description of ByePy (see Fig.2.1), which transforms Python input to a mixture of SQL and
Static Single Assignment Form (SSA). Control flow is expressed as GOTO statements, while the
remainder is emitted as SQL queries. The Apfel-compiler then processes this mixture to result
in one potentially recursive SQL query. Since the code passed from the frontend to the backend
consists, aside from control flow, of SQL queries, the integration of shapes is only necessary for
ByePy.

4 Chapter 2 Background

For completeness sake, Apfel will be shortly outlined too, but for more in-depth explanations
the interested reader is advised to refer to the work of Hirn and Grust [12].

Python

source code

AST𝜏

fully typed

AST𝑠

simplified

SSA+SQL SQL

1 2 3

Figure 2.1: ByePy Stages after [9]

ByePy is built around an Abstract Syntax Tree (AST) to manage the data internally. In the last
stage of the frontend, AST constructs are mapped to SQL queries.
When Python code first enters ByePy, Python constructs are matched on their equivalent ByePy-
AST types. A mismatch in the internal treatment of types between Python and SQL renders an
explicit type-checking step in ByePy necessary. Python does not differentiate between basic
data types like integer or float and classes [15] and instead comprehends every data as an ob-
ject. This concerns basic types like integers, collection types like lists and even for functions.
Variables are seen as names pointing to the corresponding object of unfixed type. Though since
Python Version 3.6 optional typing for variables was introduced, those type annotations are
not binding and can be ignored. As the type of a variable is not fixed before runtime, it can
be changed by assigning values of different types. Python is thus dynamically typed [16]. The
target-language SQL, on the other hand, is statically typed and requires explicit type definition
before runtime [9]. Some Python constructs remain due to Python’s untyped design with un-
clear types, such as function return types [9]. Since types must be known in order to construct
valid SQL code, these have to be derived in a type-checking step (see Fig.2.1, step 1). To ensure
type safety for SQL, the mentioned type annotations are employed in ByePy’s input programs,
and explicit type checking is performed within the compiler.
To derive unknown types, the type-checking makes use of known information, e.g. about pa-
rameter types. A fully annotated ByePy-AST emerges as the first intermediate representation
(𝐴𝑆𝑇𝜏). As the work of this thesis includes several new types, functions, and methods in ByePy,
type-checking structure needs to be added for those new constructs. A detailed description of
these structures is given in Chapter 3.
Subsequent desugaring (see Fig 2.1, step 2) limits the number of constructs to handle in later
stages to facilitate further processing. A simplified AST, 𝐴𝑆𝑇𝑠, remains. Due to the close and
intended likeness of our Python constructs and PostgreSQL’s geometric shapes, desugaring is
unnecessary for these.
In the next step (lowering, Fig 2.1, step 3), transformation to SQL queries is performed, while con-
trol flow is translated to labelled blocks k and GOTO statements [9]. For each non-basic type as
a method, the arguments are lowered recursively and then included in SQL structure matching
the AST construct.
This stage requires supplementary transformation rules to enable ByePy to translate geometric

2.2 Technical Background 5

shapes, operators, functions and methods to SQL.
Apfel finalises the translation to complete SQL:1999 code. From SSA, the code is further pro-
cessed to represent Administrative Normal Form (ANF), and finally trampolined, such that all
tail-recursive functions left by the ANF produce one recursive function only. Single tail-recursive
functions can be expressed in SQL using WITH RECURSIVE, thus representing valid SQL code.
Hence code emitted by the backend consists of SQL queries entirely and can be executed by
PostgreSQL.
In the next chapter ByePy’s first and third stages are investigated closer since both steps are
involved in compiling geometric shapes.
As argued in this chapter, the compiler is a helpful tool for combining imperative algorithms writ-
ten in Python with RDBMS integration. Therefore, extending ByePy with geometric data types is
a promising approach to speed up algorithms from the field of computational geometry.

6 Chapter 2 Background

3
Compilation Rules

Rendering PostgreSQLs geometric shapes processable for ByePy requires several actions. First,
a Python library is needed to allow the use of geometric types and operations in Python. To
the best of our knowledge, there currently is no Python library perfectly depicting the shapes,
operations, and functions PostgreSQL provides. Hence this library needs to be created in Python.
Next, the compiler must be enabled to transform such constructs properly. To achieve this,
additional rulesmust be included in ByePy, which instruct the compiler how to handle geometric
structures. The relevant stages for these changes are type checking and lowering. In the type-
checking section, additional rules were defined to instruct the compiler how to derive the types
for our newly introduced Python shapes. The lowering was enhanced by rules describing how a
shape construct is to be transformed to yield a matching SQL construct.
This chapter presents the constructed Python library and is thereafter subdivided into rules
concerning the derivation of types and rules concerning the translation to PostgreSQL code.

3.1 Python Library

Point(float,float) Box(Point,Point) Circle(Point,float) Lseg(Point,Point)

Line(Point,float) Path(bool, *Point) Polygon(*Point)

Figure 3.1: Supported Shapes with Constructors in Python

To embed the PostgreSQL geometric support in ByePy, the intended shapes, operators, and
functions must be replicated for Python first. In order to facilitate the use of the newly con-
structed library and match PostgreSQL’s documentation closely, it was attempted to provide
similarity with PostgreSQL and prevalent Python concepts. In many cases, implementation is
oriented at PostgreSQL’s implementation [17].
Since Python supports objects, and the real-world-constructs shapes can be naturally expressed

7

as objects, the contained shapes point, box, circle, line segment, line, path, and polygon are im-
plemented as object classes.
The target language PostgreSQL provides cast functions and string notation to construct a shape.
A point, for instance, can be generated using the function point(x,y), inserting two double values,
x and y. Alternatively, it can be constructed from other shapes such as box, circle, line segment
and polygon. String notation for a point is point ’(x,y)’, where x and y are strings that can be cast
to double values. In general, the equivalent to PostgreSQL cast functions was chosen as Python
constructor, as illustrated in Fig 3.1. Exceptions are path and polygon, as the available typecasts
limit these to only a subset of the shapes that can be expressed by defining their points in
string representation. They received a Python constructor, which takes a variable number of
points, mimicking the PostgreSQL string notation. Paths also required a boolean status value
defining whether the first and last points are connected. Additional PostgreSQL cast functions
were implemented as methods or functions.
While considering the object orientation of the project, the representation of PostgreSQL op-
erators as such in Python was pursued. Since Python prohibits defining new operators, func-
tionality that could not be implemented by overloading existing Python operators was realised
as method. In cases where these were impracticable, functions were employed. This approach
produced minor inconsistencies in functionality. To support orientation, source code documen-
tation is provided in the Python library.
Listing 3.1 presents a snippet of code that will be used for demonstration purposes in the re-
mainder of this chapter. Emphasis is placed on the compiler transformations discussed in the
respective sections. The program defines a part of a tiny game where a crow, represented by
a Point, tries to reach an egg, whereby windows represented by Line Segments appear as ob-
stacles along the way (see Fig. 3.2). If the crow collides with windows, it bounces off. The
program receives the player’s current position, the walk vector and the position of the goal as
arguments and calculates the next position under consideration of a possible collision. If the
egg is reached, the center of the circle representing it is returned. Keeping our working example
as simple as possible, presumptions are that windows are only placed horizontally or vertically,
and the crow can not fly far enough in one step for the flight to potentially cross two windows.

1 @to_compile
2 def play(walk: Point , player: Point , goal: Circle) -> Point:
3 nextpos: Point = player + walk
4 walk_vec: Lseg = Lseg(player ,nextpos)
5 collide: Lseg|None = SQL("SELECT wall::lseg FROM obstacles WHERE wall \?# $1;", [walk_vec])
6 if collide is not None:
7 bounce_pt: Point|None = walk_vec.intersect_point(collide)
8 if bounce_pt is not None:
9 restwalk: Point = walk - bounce_pt + player
10 if collide.horizontal ():
11 restwalk = Point(restwalk.x, -restwalk.y)
12 elif collide.vertical ():
13 restwalk = Point(-restwalk.x, restwalk.y)
14 nextpos = bounce_pt + restwalk
15 if goal.contains(nextpos):
16 return goal.center
17 return nextpos

Listing 3.1: Python Game Code

8 Chapter 3 Compilation Rules

ï

�

1

Figure 3.2: Example Game

3.2 Typing Rules

The type-checking stage of ByePy consists of rules defining the return type of a statement or
expression, based on their identifier and input type(s). The rules concerning our Python shape
library by which ByePy’s type-checking was extended are presented in this section.
An internal design decision had to be made in relation to the construction of type-checking
instructions, that determine validity of input types and derive the expected output type of op-
erations. In PostgreSQL documentation, there is not a single shape that implements a subset
of another shape’s functionality exclusively. The same holds for the constructed Python library,
as it provides exactly the same functionality as PostgreSQL. Hence no shape is a subtype of
another shape. Unification types (e.g. point|circle, read as point or circle) are not supported by
ByePy yet. To determine valid input types and corresponding output types two choices remain:
formulating instructions for each functionality and each combination of input types or defining
artificial supertypes. Such supertypes are specifically tailored for a set of operations that accept
exactly the same input types. For code-readability and maintainability it is obviously preferable
to use the latter option. An example is the HasArea-supertype, which comprises Box, Circle, and
Polygon. The artificial HasArea-supertype can, amongst others, be used to determine if both
operands to the operator && (overlap) are of a type for which this operator is specified (namely
Box, Circle, and Polygon).
However, the discussed considerations are of internal consequence only and do not directly
affect the user. The formulas presented here do not show such implementation details. For

3.2 Typing Rules 9

readability, they use concrete types and case distinction where necessary.
As the type checking does not change Python code aside from assigning matching AST types,
the structure of the rules directly reflects the structure of the Python shape library constructed
for this thesis. Since AST representation is only needed internally and therefore knowledge of
these types is dispensable to the reader, we present the derived types as Python types.
To explain how the type checking instructions are to be read, an example is described in detail.

: is read as has type
<: is read as is subtype of

Consider the type-checking formula for the constructor Point:
If we have an expression 𝑒1 of type 𝜏1, and an expression 𝑒2 of type 𝜏2:

Γ ⊢ 𝑒1 ∶ 𝜏1
Γ ⊢ 𝑒2 ∶ 𝜏2

And 𝜏1 and 𝜏2 are subtypes of type float:

𝜏1, 𝜏2 <∶ float

Then the result of function Point(𝑒1, 𝑒2) is of type Point:

Γ ⊢ Point(𝑒1, 𝑒2) ∶ Point

Which results in the following formula:

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
𝜏1, 𝜏2 <∶ float

Γ ⊢ Point(𝑒1, 𝑒2) ∶ Point
(POINT)

For the sake of readability, the type-checking rules are divided into several segments. Before
presenting the actual rules in a segment, a table illuminates the meaning of the PostgreSQL
operators the rule applies to.

3.2.1 Constructors & Functions

To present the shape constructors first, we start our summary of typing rules with functions.
Constructors are classified as functions in Python. Also, some casts and operators where
implemented as functions and will be present in this section.
Following the object-oriented paradigm it was aimed to implement each PostgreSQL operator
that could not be represented by a Python operator as a method. However, this could not
be realised for each operator as some shapes mutually depended on each other, leading to
cross-import conflicts. To avoid this, those operations are implemented as functions.

10 Chapter 3 Compilation Rules

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
𝜏1, 𝜏2 <∶ float

Γ ⊢ Point(𝑒1, 𝑒2) ∶ Point
(POINT)

Γ ⊢ 𝑒1 ∶ 𝜏1 Γ ⊢ 𝑒2 ∶ 𝜏2
𝜏1, 𝜏2 <∶ Point

Γ ⊢ Box(𝑒1, 𝑒2) ∶ Box
(BOX)

Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Point, Circle}
Γ ⊢ to_box(𝑒) ∶ Box

(BOX)

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 <∶ float

Γ ⊢ Circle(𝑒1, 𝑒2) ∶ Circle
(CIRCLE)

Γ ⊢ 𝑒 ∶ Box
Γ ⊢ to_circle(𝑒) ∶ Circle

(CIRCLE)
Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ Point

Γ ⊢ Lseg(𝑒1, 𝑒2) ∶ Lseg
(LSEG)

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 <∶ float

Γ ⊢ Line(𝑒1, 𝑒2) ∶ Line
(LINE)

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ Point
Γ ⊢ to_line(𝑒1, 𝑒2) ∶ Line

(LINE)

Γ ⊢ 𝑒1 ∶ Bool
Γ ⊢ 𝑒2 ∶ Point ... Γ ⊢ 𝑒𝑛 ∶ Point

Γ ⊢ Path(𝑒1, 𝑒2, ..., 𝑒𝑛) ∶ Path
(PATH)

Γ ⊢ 𝑒1 ∶ Point ... Γ ⊢ 𝑒𝑛 ∶ Point
Γ ⊢ Polygon(𝑒1, ...𝑒𝑛) ∶ Polygon

(POLYGON)

Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Box, Circle, Path}
Γ ⊢ to_polygon(𝑒) ∶ Polygon

(POLYGON)
Γ ⊢ 𝑒1 ∶ int Γ ⊢ 𝑒2 ∶ Circle

Γ ⊢ circle_to_poly_n(𝑒1, 𝑒2) ∶ Polygon
(POLYGON)

OPERATOR MEANING
a <@ b a contained in b

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Box
𝜏 ∈ {Point, Box, Lseg}

Γ ⊢ contained_in_box(𝑒1, 𝑒2) ∶ bool
(<@)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Circle
𝜏 ∈ {Point, Circle}

Γ ⊢ contained_in_circle(𝑒1, 𝑒2) ∶ bool
(<@)

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ Lseg
Γ ⊢ contained_in_lseg(𝑒1, 𝑒2) ∶ bool

(<@)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Line
𝜏 ∈ {Point, Lseg}

Γ ⊢ contained_in_line(𝑒1, 𝑒2) ∶ bool
(<@)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Path
𝜏 ∈ {Point, Path}

Γ ⊢ contained_in_path(𝑒1, 𝑒2) ∶ bool
(<@)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Polygon
𝜏 ∈ {Point, Polygon}

Γ ⊢ contained_in_polygon(𝑒1, 𝑒2) ∶ bool
(<@)

3.2.2 Attribute Access

PostgreSQL supports retrieving the x- and y-coordinate of a point, the upper right and lower left
point defining a box, center and radius from a circle, and deriving the start and endpoints of a

3.2 Typing Rules 11

line segment. Therefore, the Python library provides attribute access to the referenced shapes.

Γ ⊢ 𝑒 ∶ Point
Γ ⊢ 𝑒.x ∶ float

(POINT X)
Γ ⊢ 𝑒 ∶ Point
Γ ⊢ 𝑒.y ∶ float

(POINT Y)

Γ ⊢ 𝑒 ∶ Box
Γ ⊢ 𝑒.upper_right ∶ Point

(BOX UPPER RIGHT)
Γ ⊢ 𝑒 ∶ Box

Γ ⊢ 𝑒.lower_left ∶ Point
(BOX LOWER LEFT)

Γ ⊢ 𝑒 ∶ Circle
Γ ⊢ 𝑒.center ∶ Point

(CIRCLE CENTER)
Γ ⊢ 𝑒 ∶ Circle

Γ ⊢ 𝑒.radius ∶ float
(CIRCLE RADIUS)

Γ ⊢ 𝑒 ∶ Lseg
Γ ⊢ 𝑒.start ∶ Point

(LSEG START)
Γ ⊢ 𝑒 ∶ Lseg

Γ ⊢ 𝑒.end ∶ Point
(LSEG END)

3.2.3 Methods

Since our Python library uses object classes and Python does not support the definition of
new operators, the vast majority of all operators from PostgreSQL’s geometric shapes are imple-
mented as methods.

OPERATOR MEANING
@-@ a length of a
@@ a center point of shape a
a number of points in shape a

Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Lseg, Path}
Γ ⊢ 𝑒.len() ∶ float

(@-@)
Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Box, Circle, Lseg, Polygon}

Γ ⊢ 𝑒.center() ∶ Point
(@@)

Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Path, Polygon}
Γ ⊢ 𝑒.n_points() ∶ int

(#)

OPERATOR MEANING
a # b intersection point of a and b if any
a # b intersection of two boxes
a ## b point on b that is closest to a
a <-> b distance between a and b
a @> b b contained in a

12 Chapter 3 Compilation Rules

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Lseg, Line}

Γ ⊢ 𝑒1.intersect_point(𝑒2) ∶ Optional Point
(#)

Γ ⊢ 𝑒1 ∶ Box Γ ⊢ 𝑒2 ∶ Box
Γ ⊢ 𝑒1.intersect_box(𝑒2) ∶ Optional Box

(#)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Point
𝜏 ∈ {Box, Lseg, Line}

Γ ⊢ 𝑒1.closest_point(𝑒2) ∶ Point
(##)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Lseg
𝜏 ∈ {Lseg, Line}

Γ ⊢ 𝑒1.closest_point(𝑒2) ∶ Optional Point
(##)

Γ ⊢ 𝑒1 ∶ Box Γ ⊢ 𝑒2 ∶ Lseg
Γ ⊢ 𝑒1.closest_point(𝑒2) ∶ Point

(##)
Γ ⊢ 𝑒1 ∶ Polygon Γ ⊢ 𝑒2 ∶ Circle

Γ ⊢ 𝑒1.dist(𝑒2) ∶ float
(<->)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Lseg
𝜏 ∈ {Box, Line}

Γ ⊢ 𝑒1.dist(𝑒2) ∶ float
(<->)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Point
𝜏 <∶ Geometric

Γ ⊢ 𝑒1.dist(𝑒2) ∶ float
(<->)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 <∶ Geometric

Γ ⊢ 𝑒1.dist(𝑒2) ∶ float
(<->)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ Point
𝜏 ∈ {Box, Circle, Path, Polygon}
Γ ⊢ 𝑒1.contains(𝑒2) ∶ bool

(@>)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle, Polygon}
Γ ⊢ 𝑒1.contains(𝑒2) ∶ bool

(@>)

OPERATOR MEANING
a && b do a and b overlap
a << b is a (strictly) left to b
a >> b is a (strictly) right to b
a &< b does a not extend to the right of b
a &> b does a not extend to the left of b
a <<| b is a (strictly) below b
a |>> b is a (strictly) above b
a &<| b does a not extend above b
a |&> b does a not extend below b
a <^ b is box a below box b (edges allowed to touch)
a >^ b is box a above box b (edges allowed to touch)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle, Polygon}
Γ ⊢ 𝑒1.overlap(𝑒2) ∶ bool

(&&)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Point, Box, Circle, Polygon}
Γ ⊢ 𝑒1.left_strict(𝑒2) ∶ bool

(<<)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Point, Box, Circle, Polygon}
Γ ⊢ 𝑒1.right_strict(𝑒2) ∶ bool

(>>)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle, Polygon}
Γ ⊢ 𝑒1.not_right(𝑒2) ∶ bool

(&<)

3.2 Typing Rules 13

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle, Polygon}
Γ ⊢ 𝑒1.not_left(𝑒2) ∶ bool

(&>)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Point, Box, Circle, Polygon}
Γ ⊢ 𝑒1.below_strict(𝑒2) ∶ bool

(<<|)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Point, Box, Circle, Polygon}
Γ ⊢ 𝑒1.above_strict(𝑒2) ∶ bool

(|>>)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle, Polygon}
Γ ⊢ 𝑒1.not_above(𝑒2) ∶ bool

(&<|)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle, Polygon}
Γ ⊢ 𝑒1.not_below(𝑒2) ∶ bool

(|&>)
Γ ⊢ 𝑒1 ∶ Box Γ ⊢ 𝑒2 ∶ Box
Γ ⊢ 𝑒1.below_touch(𝑒2) ∶ bool

(<^)

Γ ⊢ 𝑒1 ∶ Box Γ ⊢ 𝑒2 ∶ Box
Γ ⊢ 𝑒1.above_touch(𝑒2) ∶ bool

(>^)

OPERATOR MEANING
a ?# b do a and b intersect
?- a is a horizontally aligned
a ?- b are a and b horizontally aligned
?| a is a vertically aligned
a ?| b are a and b vertically aligned
a ?-| b are a and b perpendicular
a ?|| b are a and b parallel
a = b Area equality of a and b (Circle, Box)
a = b Point number equality of a and b (Path)

Γ ⊢ 𝑒1 ∶ Line Γ ⊢ 𝑒2 ∶ Lseg
Γ ⊢ 𝑒1.intersect(𝑒2) ∶ bool

(?#)

Γ ⊢ 𝑒1 ∶ Box Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Lseg, Line}

Γ ⊢ 𝑒1.intersect(𝑒2) ∶ bool
(?#)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Lseg, Line, Path}
Γ ⊢ 𝑒1.intersect(𝑒2) ∶ bool

(?#)
Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Lseg, Line}
Γ ⊢ 𝑒.horizontal() ∶ bool

(?-)

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ Point
Γ ⊢ 𝑒1.horizontal(𝑒2) ∶ bool

(?-)
Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Lseg, Line}

Γ ⊢ 𝑒.vertical() ∶ bool
(?|)

14 Chapter 3 Compilation Rules

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ Point
Γ ⊢ 𝑒1.vertical(𝑒2) ∶ bool

(?|)
Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏 𝜏 ∈ {Lseg, Line}

Γ ⊢ 𝑒1.perpendicular(𝑒2) ∶ bool
(?-|)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Lseg, Line}

Γ ⊢ 𝑒1.parallel(𝑒2) ∶ bool
(?||)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Box, Circle}

Γ ⊢ 𝑒1.area_eq(𝑒2) ∶ bool
(=)

Γ ⊢ 𝑒1 ∶ Path Γ ⊢ 𝑒2 ∶ Path
Γ ⊢ 𝑒1.n_points_eq(𝑒2) ∶ int

(=)

Γ ⊢ 𝑒 ∶ 𝜏 𝜏 ∈ {Box, Circle, Path}
Γ ⊢ 𝑒.area() ∶ float

(AREA)
Γ ⊢ 𝑒 ∶ Box

Γ ⊢ 𝑒.diagonal() ∶ Lseg
(DIAGONAL)

Γ ⊢ 𝑒 ∶ Circle
Γ ⊢ 𝑒.diameter() ∶ float

(DIAMETER)
Γ ⊢ 𝑒 ∶ Box

Γ ⊢ 𝑒.height() ∶ float
(HEIGHT)

Γ ⊢ 𝑒 ∶ Path
Γ ⊢ 𝑒.is_closed() ∶ bool

(PATH STAT)
Γ ⊢ 𝑒 ∶ Path

Γ ⊢ 𝑒.is_open() ∶ bool
(PATH STAT)

Γ ⊢ 𝑒 ∶ Path
Γ ⊢ 𝑒.p_close() ∶ Path

(CLOSE PATH)
Γ ⊢ 𝑒 ∶ Path

Γ ⊢ 𝑒.p_open() ∶ Path
(OPEN PATH)

Γ ⊢ 𝑒1 ∶ Point Γ ⊢ 𝑒2 ∶ Point
Γ ⊢ 𝑒1.slope(𝑒2) ∶ float

(SLOPE)
Γ ⊢ 𝑒 ∶ Box

Γ ⊢ 𝑒.width() ∶ float
(WIDTH)

Γ ⊢ 𝑒 ∶ Box
Γ ⊢ 𝑒.lseg() ∶ Lseg

(LSEG CAST)
Γ ⊢ 𝑒 ∶ Polygon

Γ ⊢ 𝑒.bound_box() ∶ Box
(BOUNDING BOX)

Γ ⊢ 𝑒1 ∶ Box Γ ⊢ 𝑒2 ∶ Box
Γ ⊢ 𝑒1.bound_box(𝑒2) ∶ Box

(BOUNDING BOX)
Γ ⊢ 𝑒 ∶ Lseg

Γ ⊢ 𝑒.to_point() ∶ Point
(POINT CAST)

Γ ⊢ 𝑒 ∶ Polygon
Γ ⊢ 𝑒.to_circle() ∶ Circle

(CIRCLE CAST)

3.2.4 Operators

Out of the large number of operators defined for geometric shapes in PostgreSQL, only very
few could be implemented as actual operators in Python. The reason can be found in Python’s
prohibition to define new operators. However, basic arithmetic operators like + and *, such as
comparisons as ==, >=, < could be defined for the shape classes.
PostgreSQL’s meaning for comparators is inconsistent, though. For circle and box, areas are
compared. For a path, the number of points is compared, and line segments are compared for
the equality of points.
Since using the established equality operator == for comparing path’s point number and the
area of boxes and circles would bemisleading, and equality for boxes and circles was already de-
fined based on attribute equality, these were implemented as methods with meaningful names.

3.2 Typing Rules 15

As this was not the case for line segments, they received the befitting operator implementation.
⊗ ∈ {+, -, *, /}

Γ ⊢ 𝑒1 ∶ 𝜏 𝜏 ∈ {Point, Box, Circle, Path}
Γ ⊢ 𝑒2 ∶ Point
Γ ⊢ 𝑒1 ⊗ 𝑒2 ∶ 𝜏

(ARITHMETICS)
Γ ⊢ 𝑒1 ∶ Path Γ ⊢ 𝑒2 ∶ Path
Γ ⊢ 𝑒1 + 𝑒2 ∶ Optional Path

(PATH CONCAT)

Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏
𝜏 ∈ {Point, Box, Circle, Lseg, Polygon}

Γ ⊢ 𝑒1 == 𝑒2 ∶ bool
(EQUALITY)

⊗ ∈ {<, >, >=, <=}
Γ ⊢ 𝑒1 ∶ 𝜏 Γ ⊢ 𝑒2 ∶ 𝜏

𝜏 ∈ {Box, Circle, Lseg, Path}
Γ ⊢ 𝑒1 ⊗ 𝑒2 ∶ bool

(COMPARE)

After presenting the relevant formulas for enforcing type checking, listing 3.2 shows a simpli-
fied version of the output from this stage for the working example. AST-types, which are only
displayed for basic datatypes, are shown in blue. Originally, the compiler also derives more
complex types as a conditional type. Inspecting our mini-game, we observe that all expressions
have an according AST type assigned, as did the results from applying operators, methods or
functions.
Let us examine one example closer:

1 bounce_pt = (walk_vec ::LsegType). intersect_point (collide ::LsegType) ::Optional
PointType

As walk_vec was declared as a line segment before, it clearly is of the type line segment. The
argument to the method intersect_point (collide) is also a known line segment, as its status as
an optional line segment type was stripped off in a previous condition (if collide is not None)
in line 5. The type checking contains instructions for a method named intersect_point, which
define valid object types as line segment or line with an argument of the same type. It also
specifies this method to return either a Point or None. The variable bounce_point thus is of
type Optional Point.

1 def play(walk ::PointType , player ::PointType , goal ::CircleType) -> PointType:
2 nextpos = (player ::PointType + walk ::PointType) ::PointType
3 walk_vec = Lseg(player ::PointType ,nextpos ::PointType) ::LsegType
4 collide = SQL("SELECT wall::lseg FROM obstacles WHERE wall \?# $1;", [walk_vec ::LsegType])

::Optional LsegType
5 if (((collide ::Optional LsegType) is not None ::None)::BooleanType):
6 bounce_pt = (walk_vec ::LsegType).intersect_point(collide ::LsegType) ::Optional

PointType
7 if (((bounce_pt ::Optional PointType) is not None ::None)::BooleanType):
8 restwalk = ((walk ::PointType - bounce_pt ::PointType)::PointType + player ::

PointType) :: PointType
9 if ((collide ::LsegType).horizontal () ::BooleanType):
10 restwalk = Point (((restwalk ::PointType).x)::FloatType ,-(((restwalk ::PointType).

y)::FloatType)) ::PointType
11 elif ((collide ::LsegType).vertical () ::BooleanType):
12 restwalk = Point (-(((restwalk ::PointType).x)::FloatType) ,((restwalk ::PointType)

.y)::FloatType) ::PointType
13 nextpos = (bounce_pt ::PointType + restwalk ::PointType) :: PointType
14 if ((goal ::CircleType).contains(nextpos ::PointType) ::BooleanType):
15 return ((goal ::CircleType).center ::PointType)
16 return (nextpos ::PointType)

Listing 3.2: Type Checking Step

16 Chapter 3 Compilation Rules

3.3 Lowering Rules

The actual transformation from Python geometric shapes into PostgreSQL geometric shapes oc-
curs at the lowering stage of ByePy. Here the pythonic-oriented code structure is changed to
match the desired SQL concepts.
In accordance with [12, 14], we introduce an inference operator⤇𝑘 which defines the translation
of ByePy expressions to SQL, where the label 𝑘 identifies the block of code in which the current
operation is placed. Translations occur in the presence of potential known block definitions 𝑠,
which may be updated by the operation.
Although for most shapes the transformation is rather straightforward, using geometric casts
over existing PostgreSQL types like circle(point, double precision), some shapes require special
treatment. Path and polygon are exceptions since they have no cast that permits to construct
the shapes freely from existing types, such as points or line segments defining the shapes. Both
can be cast into each other, given the path is closed, and a polygon can additionally be cast
from a circle or a box. Another form of constructing a path or polygon in PostgreSQL is given as
defining it in string shape, which allows for a multitude of more freely defined shapes. There-
fore the lowering of those shapes can not simply use a constructor and needs more attention.
For those, arguments (namely points) were lowered to their SQL equivalent, then cast as text
and folded together comma-separated using PostgreSQL’s concat operator. For the path, an
additional distinction of cases needs to be made since the closing status of the path is ex-
pressed solely by using squared brackets or parentheses. To simplify this procedure, points are
transformed directly into their string-variant.

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑃𝑜𝑖𝑛𝑡(𝑒Py1 , 𝑒

Py
2)) ⤇𝑘 (𝑝𝑜𝑖𝑛𝑡′(′||𝑒SQL1 ∶∶ 𝑡𝑒𝑥𝑡||′,′ ||𝑒SQL2 ∶∶ 𝑡𝑒𝑥𝑡||′)′

(POINT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) ... (𝑒Py𝑛 , 𝑠) ⤇𝑘 (𝑒SQL𝑛 , 𝑠1)
(𝑃𝑎𝑡ℎ(𝑇𝑟𝑢𝑒Py, ∗𝑒Py)) ⤇𝑘 (𝑝𝑎𝑡ℎ′(′||𝑒

Py
1 ∶∶ 𝑡𝑒𝑥𝑡||′,′ ||...𝑒Py𝑛 ∶∶ 𝑡𝑒𝑥𝑡||′)′)

(PATH)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) ... (𝑒Py𝑛 , 𝑠) ⤇𝑘 (𝑒SQL𝑛 , 𝑠1)
(𝑃𝑎𝑡ℎ(𝐹𝑎𝑙𝑠𝑒Py, ∗𝑒Py)) ⤇𝑘 (𝑝𝑎𝑡ℎ′[′||𝑒

Py
1 ∶∶ 𝑡𝑒𝑥𝑡||′,′ ||...𝑒Py𝑛 ∶∶ 𝑡𝑒𝑥𝑡||′]′)

(PATH)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) ... (𝑒Py𝑛 , 𝑠) ⤇𝑘 (𝑒SQL𝑛 , 𝑠1)
(𝑃𝑜𝑙𝑦𝑔𝑜𝑛(∗𝑒Py)) ⤇𝑘 (𝑝𝑜𝑙𝑦𝑔𝑜𝑛′(′||𝑒

Py
1 ∶∶ 𝑡𝑒𝑥𝑡||′,′ ||...𝑒Py𝑛 ∶∶ 𝑡𝑒𝑥𝑡||′)′)

(POLYGON)

3.3 Lowering Rules 17

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1)
(𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)

(𝐵𝑜𝑥(𝑒Py1 , 𝑒
Py
2)) ⤇𝑘 (𝑏𝑜𝑥(𝑒SQL1 , 𝑒SQL2)

(BOX)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1)
(𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)

(𝐶𝑖𝑟𝑐𝑙𝑒(𝑒Py1 , 𝑒
Py
2)) ⤇𝑘 (𝑐𝑖𝑟𝑐𝑙𝑒(𝑒SQL1 , 𝑒SQL2)

(CIRCLE)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1)
(𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)

(𝐿𝑠𝑒𝑔(𝑒Py1 , 𝑒
Py
2)) ⤇𝑘 (𝑙𝑠𝑒𝑔(𝑒SQL1 , 𝑒SQL2)

(LSEG)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1)
(𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)

(𝐿𝑖𝑛𝑒(𝑒Py1 , 𝑒
Py
2)) ⤇𝑘 (𝑙𝑖𝑛𝑒(𝑒SQL1 , 𝑒SQL2)

(LINE)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑙𝑒𝑛()) ⤇𝑘 (@-@𝑒SQL)

(LENGTH)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑛_𝑝𝑜𝑖𝑛𝑡𝑠()) ⤇𝑘 (#𝑒SQL)

(# PT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡_𝑝𝑜𝑖𝑛𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 #𝑒SQL2)

(INTERSECT PT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡_𝑏𝑜𝑥(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 #𝑒SQL2)

(INTERSECT BOX)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡_𝑝𝑜𝑖𝑛𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 #𝑒SQL2)

(INTERSECT PT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡_𝑏𝑜𝑥(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 #𝑒SQL2)

(INTERSECTION)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 ##𝑒SQL2)

(CLOSEST PT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑑𝑖𝑠𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 <->𝑒SQL2)

(DISTANCE)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 @>𝑒SQL2)

(CONTAINS)

18 Chapter 3 Compilation Rules

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 &&𝑒SQL2)

(OVERLAP)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑙𝑒𝑓𝑡_𝑠𝑡𝑟𝑖𝑐𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 « 𝑒SQL2)

(LEFT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑟𝑖𝑔ℎ𝑡_𝑠𝑡𝑟𝑖𝑐𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 » 𝑒SQL2)

(RIGHT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑛𝑜𝑡_𝑟𝑖𝑔ℎ𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 &< 𝑒SQL2)

(NOT RIGHT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑛𝑜𝑡_𝑙𝑒𝑓𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 &> 𝑒SQL2)

(NOT LEFT)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑏𝑒𝑙𝑜𝑤_𝑠𝑡𝑟𝑖𝑐𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 «| 𝑒SQL2)

(BELOW)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑎𝑏𝑜𝑣𝑒_𝑠𝑡𝑟𝑖𝑐𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 |» 𝑒SQL2)

(ABOVE)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑛𝑜𝑡_𝑎𝑏𝑜𝑣𝑒(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 &<| 𝑒SQL2)

(NOT ABOVE)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑛𝑜𝑡_𝑏𝑒𝑙𝑜𝑤(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 |&> 𝑒SQL2)

(NOT BELOW)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑏𝑒𝑙𝑜𝑤_𝑡𝑜𝑢𝑐ℎ(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 <^𝑒SQL2)

(BOX BELOW)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑎𝑏𝑜𝑣𝑒_𝑡𝑜𝑢𝑐ℎ(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 >^ 𝑒SQL2)

(BOX ABOVE)

3.3 Lowering Rules 19

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 ?# 𝑒SQL2)

(INTERSECT)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙()) ⤇𝑘 (?- 𝑒SQL)

(HORIZONTAL)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 ?- 𝑒SQL2)

(HORIZONTAL)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙()) ⤇𝑘 (?| 𝑒SQL)

(VERTICAL)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 ?| 𝑒SQL2)

(VERTICAL)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 ?-| 𝑒SQL2)

(PERPENDICULAR)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 ?|| 𝑒SQL2)

(PARALLEL)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑎𝑟𝑒𝑎_𝑒𝑞(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 = 𝑒SQL2)

(AREA COMP)

(𝑒Py1 , 𝑠) ⤇𝑘 (𝑒SQL1 , 𝑠1) (𝑒Py2 , 𝑠1) ⤇𝑘 (𝑒SQL2 , 𝑠2)
(𝑒Py1 .𝑛_𝑝𝑜𝑖𝑛𝑡𝑠_𝑒𝑞(𝑒

Py
2)) ⤇𝑘 (𝑒SQL1 = 𝑒SQL2)

(N COMP)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑎𝑟𝑒𝑎()) ⤇𝑘 (𝑎𝑟𝑒𝑎(𝑒SQL))

(AREA)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙()) ⤇𝑘 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑒SQL))

(DIAGONAL)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟()) ⤇𝑘 (𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑒SQL))

(DIAMETER)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.ℎ𝑒𝑖𝑔ℎ𝑡()) ⤇𝑘 (ℎ𝑒𝑖𝑔ℎ𝑡(𝑒SQL))

(HEIGHT)

20 Chapter 3 Compilation Rules

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑()) ⤇𝑘 (𝑖𝑠𝑐𝑙𝑜𝑠𝑒𝑑(𝑒SQL))

(CLOSED PATH)
(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)

(𝑒Py.𝑖𝑠_𝑜𝑝𝑒𝑛()) ⤇𝑘 (𝑖𝑠𝑜𝑝𝑒𝑛(𝑒SQL))
(OPEN PATH)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑝_𝑐𝑙𝑜𝑠𝑒()) ⤇𝑘 (𝑝𝑐𝑙𝑜𝑠𝑒(𝑒SQL))

(CLOSE PATH)
(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)

(𝑒Py.𝑝_𝑜𝑝𝑒𝑛()) ⤇𝑘 (𝑝𝑜𝑝𝑒𝑛(𝑒SQL))
(OPEN PATH)

PostgreSQL provides array-like access to retrieve data from points, boxes and line segments,
which is used to model attribute access. Indexing the shape with ’0’ returns the first argument
and ’1’ the second argument from the shape. For circles, PostgreSQL supplies functions to
retrieve center position and radius.

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑐𝑒𝑛𝑡𝑒𝑟) ⤇𝑘 (𝑐𝑒𝑛𝑡𝑒𝑟(𝑒SQL))

(CIRCLE ACCESS)
(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)

(𝑒Py.𝑟𝑎𝑑𝑖𝑢𝑠) ⤇𝑘 (𝑟𝑎𝑑𝑖𝑢𝑠(𝑒SQL))
(CIRCLE ACCESS)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑥) ⤇𝑘 (𝑒SQL[0])

(POINT ACCESS)
(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑦) ⤇𝑘 (𝑒SQL[1])

(POINT ACCESS)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑢𝑝𝑝𝑒𝑟_𝑟𝑖𝑔ℎ𝑡) ⤇𝑘 (𝑒SQL[0])

(BOX ACCESS)
(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)

(𝑒Py.𝑙𝑜𝑤𝑒𝑟_𝑙𝑒𝑓𝑡) ⤇𝑘 (𝑒SQL[1])
(BOX ACCESS)

(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑠𝑡𝑎𝑟𝑡) ⤇𝑘 (𝑒SQL[0])

(LSEG ACCESS)
(𝑒Py, 𝑠) ⤇𝑘 (𝑒SQL, 𝑠1)
(𝑒Py.𝑒𝑛𝑑) ⤇𝑘 (𝑒SQL[1])

(LSEG ACCESS)

After the lowering, we can observe that most calculations are replaced by simple SQL queries
(compare Listing 3.3). Control Flow is expressed in Terms of GOTOs. As SSA requires each variable
to be assigned exactly once, variables have been versioned. In the case of branching control
flow, different versions of a variable may be valid depending on the branch taken. In such cases,
a 𝜙 function determines the correct version. Nested branching leads to comparatively many 𝜙
functions, so the present example has been manually simplified for readability. SQL queries are
shown in squared brackets. It can be observed that shapes, functions, operators and methods
are replaced by their SQL counterpart.
Back in our sample line, themethod intersect_point has been replaced by the binary PostgreSQL-
operator # that returns the intersection point of its operands, if any, and else None. The first
operand is the object on which the method was defined in Python, and the second operand is
the former argument. SSA-serialisation applied a version number to the variable name.

1 bounce_pt_1 = [SELECT walk_vec_1 # collide_1];

3.3 Lowering Rules 21

1 proc play(walk , player , goal):
2
3 k1 nextpos_1 = [SELECT player_1 + walk];
4 walk_vec_1 = [SELECT lseg(player , nextpos_1)];
5 collide_1 = [SELECT "obstacles"."wall" AS "wall"
6 FROM obstacles AS "obstacles"
7 WHERE "obstacles"."wall" ?# walk_vec_1];
8 IF [SELECT collide_1 IS NOT NULL] THEN GOTO k2 ELSE GOTO k8;
9
10 k2 bounce_pt_1 = [SELECT walk_vec_1 # collide_1];
11 IF [SELECT bounce_pt_1 IS NOT NULL] THEN GOTO k3 ELSE GOTO k8;
12 k3 restwalk_1 = [SELECT (walk - bounce_pt_1) + player];
13 IF [SELECT ?- collide_1] THEN GOTO k4 ELSE GOTO k7;
14
15 k4 restwalk_2 = [SELECT (('(' || (((restwalk_1)[0]) :: text || ',')) ((- (

restwalk_1)[1]) :: text || ')')) :: point];
16
17 k5 IF [SELECT ?| collide_1] THEN GOTO k6 ELSE GOTO k7;
18
19 k6 restwalk_3 = [SELECT (('(' || ((- (restwalk_1)[0]) :: text || ',')) (((

restwalk_1)[1]) :: text || ')')) :: point];
20
21 k7 restwalk_4 = ϕ(restwalk_2 , restwalk_3);
22 nextpos_2 = [SELECT bounce_pt_1 + restwalk_4];
23 GOTO k8;
24
25
26 k8 nextpos_3 = ϕ(nextpos_1 , nextpos_2);
27 IF [SELECT goal @> nextpos_3] THEN GOTO k9 ELSE GOTO k10;
28
29 k9 RETURN [SELECT center(goal)];
30
31 k10 RETURN nextpos_3;

Listing 3.3: Lowering Step Simplified Output

22 Chapter 3 Compilation Rules

4
Practical Demonstation

In order to demonstrate the capabilities of the compiler in practice, three examples from
the field of computational geometry were chosen to be implemented using the Python library
constructed for this thesis. Those algorithms were transformed entirely into SQL queries using
the extended compiler. The algorithms chosen were

• the quickhull algorithm to compute the convex hull over a set of points
• the ear-clipping algorithm for triangulating polygons
• the k-means algorithm for clustering a set of points into k clusters

Figure 4.1 illustrates the input, output and algorithmic processes.

Quickhull

Ear Clipping

K-means

1

Figure 4.1: Example algorithms: input, intermediate stage, and output

The quickhull algorithm [18, 19, 20] describes a recursive solution for calculating the convex
hull over a set of points. The convex hull is the minimum subset of points that covers all

23

points from the set. In order to use the compiler on it, it had to be rewritten in iterative form
since ByePy is not yet able to process recursion in Python-Code. The core mechanism of this
algorithm is to determine points that are certain to be on the convex hull (as the leftmost or
rightmost point) and divide the remainder into sets that are yet covered by the so-constructed
intermediate convex hull and such that are not. The remaining sets are further assigned to
sets by finding more certain hull points (as the point with the largest distance to one segment
of the intermediate hull) until no point can be found outside the intermediate hull anymore.
Applications for the convex hull can be found in various domains. Matching and Scheduling
are among them, as range searching, statistical trimming [21], and image analysing [22].

Next up is the ear-clipping algorithm. The algorithm iterates a polygon in order to find
’ears’. An ear, in this context, is defined as a triangle of points on the polygon, which does
not contain any other point from the polygon. These are cut from the polygon [23] until
only one last triangle remains. The polygon has then been subdivided into a set of triangles.
Computer graphics represent a field where such divisions of space are widely used. Modelling
2-dimensional surfaces in 3-dimensional spaces [8] or placement of objects (e.g. of surveillance
equipment) in polygonal spaces (e.g. rooms) are example applications.

Last but not least is the k-means algorithm. The k-means algorithm receives a set of
points and a number of clusters to produce. Picking k random start points, it then assigns each
reference point all points from the set whose distance to that reference point is the minimum
distance from all reference points. Afterwards, new reference points are calculated as the mean
of the points belonging to a cluster. This is executed iteratively until the cluster assignments do
not change anymore. Since unlucky picks for the first reference points may prolong execution
time and yield poor results, we oriented the sampling procedure at k++-means [24], where only
the first of k reference points is picked at random. In the original work, the next points are
sampled with weighted probability. The probability is dependent on the point’s distance to the
closest sample point. Due to ByePy’s restricted input language, we opted to directly pick the
next sample point as the one which exhibits the largest minimum distance to the reference
points so far.

All three algorithms were successfully implemented using the Python subset applicable
to ByePy. The compiler translated the programs entirely to SQL and executed them successfully
using sample data. It was hence shown that ByePy is capable of transforming the newly
created Python library for geometric shapes to PostgreSQL. The general applicability of the
compiler therefore was extended in a useful way. Please note that this section is concerned
with applicability only. Runtime measurements to evaluate the actual speedup are out of the
scope of this thesis and remain to be shown.

24 Chapter 4 Practical Demonstation

5
Discussion

The work of this thesis was concerned with enabling the transformation of imperatively
written Python programs containing geometric data with the compiler consisting of ByePy
frontend and Apfel backend to SQL for PostgreSQL. Although runtime improvement in com-
parison with other solutions has yet to be shown, an alternative approach for geometric
database integration in imperative programs was presented. In the context of this thesis, the
practicability for real geometric algorithms was confirmed with polygon triangulation, cluster-
ing and calculation of the convex hull. This indicates practicability in actual industrial processes.

USER INFORMATION
Some limitations remain in the current version of ByePy that require the user’s attention as
they restrain the possible input programmes to the compiler.
As Python does not support enforced access protection, the utilisation of internal helper
methods and functions by the user can not be restricted completely, even though attempts to
compile these with ByePy terminate the compiling process with an error. By adding _ or __ in
front of an attribute, method or function, an intention for private treatment can be expressed,
though no actual prohibition occurs. It is the user’s responsibility not to employ constructs
marked with __ outside of the library.
Furthermore, PostgreSQL shape parameters can only be retrieved from points, boxes, circles and
line segments for subsequent processing. This is not the case for any other shape. Specifically,
the points building a path or polygon can not be extracted anymore for further computations.
This poses a severe limitation to the applicability of these shapes.
Moreover, for practical use in implementing geometric algorithms, some very desirable func-
tions are missing in PostgreSQL’s geometric constructs. Although quite often necessary when
working with line segments, polygons, paths and lines, there is no function to e.g. determine
an angle or decide whether a given point is left or right to a line segment.
Another serious reservation is the fact that ByePy is able to transform a single function only,
nested function calls and recursion can not be processed by the compiler despite extensive
use. Consequently, code reusability is greatly limited and readability suffers.

WORKAROUND
Some of the listed restrictions can be mitigated by manual workarounds performed by users. If
a subset of table entries is to be considered in embedded queries, identifiers from the relation
can be kept, e.g. in a list in Python and be passed to queries. If additional computations based
on point coordinates for paths or polygons are to be expected, shapes may be stored as points
accompanied by identifiers marking their position in the shape and shape membership. For

25

the use of path or polygon functionality, temporal assembly to the required type is in scope.
These solutions require accordingly planned relation design, though.
General nested function calls can be manually inlined by the user, and recursion needs to be
bypassed by transforming recursive calls to imperative looping concepts.

FUTURE WORK
Future versions could lighten the burden of manual user workaround by applying some
improvements.
In order to provide a broader range of functionality, the Python library can be enhanced by
additional methods, accompanied by internal compiler instructions to construct matching
functionality in PostgreSQL.
The use of helper functions and recursion can be facilitated by enabling internal automatic
inline expansion and supporting transformation from recursive functions to GOTO statements
in the compiler.
The compiler that is extended in this thesis generates queries for PostgreSQL from Python code.
Additional source- and target platforms might be considered [13] to broaden the applicability
further. However, target platforms should provide geometric constructs to benefit from
geometric support in the compiler. Examples of RDBMSs providing geometric structure are SQL
Server [25] and MySQL [26].

In summary, although ByePy currently is applicable to Python geometric programs, its ap-
peal can be improved by implementing additional features such as general nested function
calls, recursion and further functionality.

26 Chapter 5 Discussion

Bibliography

[1] Stackoverflow. 2022 Developer Survey. URL: https : / / survey . stackoverflow . co / 2022 /
#technology-most-popular-technologies. (accessed: 01.03.2023).

[2] J. Schmidt H. Ernst and G. Beneken. Grundkurs Informatik. Grundlagen und Konzepte für
die erfolgreiche IT-Praxis - Eine umfassende, praxisorientierte Einführung. 6th ed. Springer
Vieweg, 2016. ISBN: 978-3-658-14633-7.

[3] S. Cass. Top Programming Languages for 2022. URL: https : / / spectrum . ieee . org / top -
programming-languages-2022. (accessed: 01.03.2023).

[4] Tiobe Software BV. Tiobe Index for February 2023. URL: https://www.tiobe.com/tiobe-index/.
(accessed: 01.03.2023).

[5] P. Carbonnelle. PYPL PopularitY of Programming Language. URL: https://pypl.github.io/
PYPL.html. (accessed: 01.03.2023).

[6] P. Carbonnelle. TOPDB Top Database Index. URL: https://pypl.github.io/DB.html. (ac-
cessed: 01.03.2023).

[7] Jetbrains s.r.o. Python Developers Survey 2021 Results. URL: https://lp.jetbrains.com/
python-developers-survey-2021/. (accessed: 01.03.2023).

[8] M. Overmars M. de Berg M. van Kreveld and O. Schwarzkopf. Computational Geometry. Al-
gorithms and Applications. 2nd ed. Springer, 2000. ISBN: 3-540-65620-0.

[9] T. Fischer. “To Iterate Is Human, to Recurse Is Divine — Mapping Iterative Python to Recur-
sive SQL”. In: BTW 2023. Ed. by Birgitta König-Ries et al. Gesellschaft für Informatik e.V., 2023.
DOI: 10.18420/BTW2023-73.

[10] K. Ramachandra et al. “Optimization of Imperative Programs in a Relational Database”. In:
Proc. VLDB Endow. 11.4 (2017), pp. 432–444.

[11] D. Hirn C. Duta and T. Grust. “Compiling PLSQL Away”. In: 0 (2019), pp. 0-0.

[12] D. Hirn and T. Grust. “One WITH RECURSIVE is Worth Many GOTOs”. In: Proceedings of the
40th ACM SIGMOD Int’l Conference on Management of Data (SIGMOD 2021), Xi’an, Shaanxi,
China, June 2021. 2021.

[13] D. Hirn T. Fischer and T. Grust. “Snakes on a Plan”. In: Proceedings of the 41st ACM SIGMOD
Int’l Conference on Management of Data (SIGMOD 2022), Philadelphia, PA, USA, June 2022.
2022.

[14] T. Fischer. “ByePy: Compilation of Python to SQL”. MA thesis. University of Tuebingen, 2022.

[15] M. Kofler. Python. Der Grundkurs. 1st ed. Rheinwerk Computing, 2019. ISBN: 978-3-8362-6679-
6.

[16] J. Lehtosalo G.van Rossum and Ł. Langa. Pep 484 - Type Hints. URL: https://peps.python.
org/pep-0484/#non-goals. (accessed: 10.04.2023).

Bibliography 27

https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://www.tiobe.com/tiobe-index/
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://pypl.github.io/DB.html
https://lp.jetbrains.com/python-developers-survey-2021/
https://lp.jetbrains.com/python-developers-survey-2021/
https://doi.org/10.18420/BTW2023-73
https://peps.python.org/pep-0484/##non-goals
https://peps.python.org/pep-0484/##non-goals

[17] PostgreSQL Global Development Group. PostgreSQL Source Code. geo_ops.c. URL: https:
//doxygen.postgresql.org/geo__ops_8c_source.html#l02775. (accessed: 02.03.2023).

[18] W. Eddy. “A new convex hull algorithm for planar sets”. In: ACM Transactions on Mathemat-
ical Software 3 (1977), pp. 398–403.

[19] A. Bykat. “Convex hull of a finite set of points in two dimensions”. In: Information Processing
Letters 7 (1978), pp. 296–298.

[20] P.J. Green and B.W. Silverman. “Constructing the convex hull of a set of points in the plane”.
In: Computer Journal 22 (1979), pp. 262–266.

[21] J. Hershberger and S. Suri. “Applications of a semi-dynamic convex hull algorithm”. In: BIT
32 (1992), pp. 249–267.

[22] W. E. Snyder and D. A. Tang. “Finding the Extrema of a Region”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-2.3 (1980), pp. 266–269. DOI: 10.1109/TPAMI.
1980.4767016.

[23] H. Everett X. Kong and G. Toussaint. “The Graham Scan Triangulates Simple Polygons”. In:
Pattern Recognition Letters 11 (1990), pp. 713–716.

[24] D. Arthur and S. Vassilvitskii. “K-Means++: The Advantages of Careful Seeding”. In: Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’07.
New Orleans, Louisiana: Society for Industrial and Applied Mathematics, 2007, pp. 1027–
1035. ISBN: 9780898716245.

[25] Microsoft. Spatial Types - geometry (Transact-SQL). URL: https://learn.microsoft.com/en-
us/sql/t-sql/spatial-geometry/spatial-types-geometry-transact-sql?view=sql-server-
ver16. (accessed: 06.03.2023).

[26] Oracle Corporation. MySQL Reference 8.0 Manual. 12.17.1 Spatial Function Reference. URL:
https://dev.mysql.com/doc/refman/8.0/en/spatial-function-reference.html. (accessed:
06.03.2023).

28 Bibliography

https://doxygen.postgresql.org/geo__ops_8c_source.html#l02775
https://doxygen.postgresql.org/geo__ops_8c_source.html#l02775
https://doi.org/10.1109/TPAMI.1980.4767016
https://doi.org/10.1109/TPAMI.1980.4767016
https://learn.microsoft.com/en-us/sql/t-sql/spatial-geometry/spatial-types-geometry-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/spatial-geometry/spatial-types-geometry-transact-sql?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/spatial-geometry/spatial-types-geometry-transact-sql?view=sql-server-ver16
https://dev.mysql.com/doc/refman/8.0/en/spatial-function-reference.html

	Acknowledgement
	Abstract
	Acronyms
	Introduction
	Background
	Previous Work
	Technical Background

	Compilation Rules
	Python Library
	Typing Rules
	Constructors & Functions
	Attribute Access
	Methods
	Operators

	Lowering Rules

	Practical Demonstation
	Discussion
	Bibliography

