
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik

Database Systems Research Group

Bachelorthesis Computer Science

Implementing Abstract Machines in SQL

Romain CARL

29.03.2023

Examiner

Prof. Dr. Torsten GRUST

Supervisor

Louisa LAMBRECHT

Romain CARL:
Implementing Abstract Machines in SQL
Bachelorthesis Computer Science
Eberhard Karls Universität
From 01.12.2022 to 29.03.2023

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorthesis selbständig
und nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle
Stellen, die dem Wortlaut oder dem Sinne nach anderen Werken entnom-
men sind, durch Angaben von Quellen als Entlehnung kenntlich gemacht
worden sind. Diese Bachelorthesis wurde in gleicher oder ähnlicher Form
in keinem anderen Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Romain CARL

iii

Abstract

Abstract machines are a useful tool in understanding how a program’s complex
high-level language representation can be broken down to low-level execution steps.
They feature environments and other data structures that are important building
stones of interpreters. Hence, implementing them in SQL can provide valuable in-
sights into how these crucial structures can be represented in relational databases,
which can be used to inform source-to-source language translation into SQL.

This thesis develops SQL realizations of the SECD and the Krivine machine, that
both operate on 𝜆-calculus. Six machine implementations are obtained, tested and
compared with regards to performance. Among these SQL-driven interpreters of 𝜆-
calculus, a PostgreSQL implementation relying on a hash table extension shows to
be best-performing.

Abstract v

Contents

Abstract v

Acronyms ix

1. Introduction 1
1.1. Relational Database Management Systems . 2

1.1.1. PostgreSQL . 2
1.1.2. DuckDB . 2
1.1.3. Umbra . 3

2. Abstract machines 5
2.1. Overview on Lambda calculus . 5
2.2. The SECD machine . 6
2.3. The Krivine machine . 8
2.4. Other machines . 10

3. Implementation 11
3.1. Vanilla PostgreSQL . 11

3.1.1. Input format and data types . 11
3.1.2. SECD machine . 13
3.1.3. Krivine machine . 16

3.2. PostgreSQL with hash table extension . 17
3.2.1. Hash table extension . 17
3.2.2. SECD and Krivine machine . 17

3.3. Other DBMS . 18
3.3.1. DuckDB . 19
3.3.2. Umbra . 20

4. Evaluation 21
4.1. Setup . 21

4.1.1. Term generation . 21
4.1.2. Test sets . 22

4.2. Results and discussion . 23

5. Conclusion 25
5.1. Future work . 25

Bibliography 27

Appendices 31
A. Listings . 31
B. Tables . 34

Contents vii

Acronyms

ACID Atomicity, Consistency, Isolation, Durability
ADT Algebraic Data Type
CTE Common Table Expression
DAG Directed Acyclic Graph
DBMS Database Management System
JSON JavaScript Object Notation
LIFO Last In First Out
UDF User-Defined Function
WHNF Weak Head Normal Form
WNF Weak Normal Form

ix

1
Introduction

Upon reading this thesis’ title, one might rightfully ask what, if any, relation between abstract
machines and SQL exists and how it could possibly give sufficient reason to engage in imple-
menting the first in the latter. Indeed, the notion of abstract machines, which by itself only
implies something that enables step-by-step execution of programs (machine) while not be-
ing detailed in how it is actually built (abstract) [1], seems to have little in common with the
Structured Query Language (SQL, originally SEQUEL) [2], the standard language for accessing
and manipulating data on relational databases. Yet, the two might surprisingly be connected
by the topic of compilation.

Characterized as “any set of data structures and algorithms which can perform the storage
and execution of programs” [3, p. 2], abstract machines are inherently linked to compilation, as
they “bridge the gap between the high level of a programming language and the low level of a
real machine” [1, p. 1]. Such a machine takes a program 𝑝 – expressed in a formalized language
𝐿 – as input, loads it into its internal data structure and executes it.

A conceptually similar approach can be found in recent publications of the Database Systems
Research Group – where SQL and an underlying query engine fill the role of the abstract machine
in executing the code of a foreign language 𝐿. The attempt to move computation from outside to
inside of database systems and thus close to the data [4] has motivated a series of compilation
pipelines that translate code from a variety of source languages or SQL variants – be it PL/SQL
[5], Python [6] or recursive UDFs [7] – into plain SQL.

Every one of these translations banks on the use of SQL:1999’s WITH RECURSIVE construct1 [9].
This is not a coincidence, since, by virtue of its expressive power that enables looping, WITH
RECURSIVE makes SQL a full-fledged, Turing-complete programming language2 [5, p. 2] (subse-
quently, we can expect our code to heavily rely on it and to structurally resemble interpreters
as in [7]).

For these reasons, implementing abstract machines in SQL might not be such a far-fetched
endeavour after all. We shall discuss two machines designed to interpret lambda calculus; their
SQL realization will therefore allow the evaluation of any 𝜆-term – or, by extension, a program
written in any functional language – by the SQL engine. The goal of this thesis is to prove the
feasibility of these implementations in different Database Management System (DBMS), first, as
a pure proof of concept, and second, to compare their performances. Incidentally, our code
might uncover patterns in the compilation pipelines developed so far and inform future work
1Whose semantics admittedly requires getting used to, since it specifies a very narrow form of (tail-)recursion, for which
the term of iteration would be more adequate. It is best understood in [8].

2For proof, also see this Postgres realization of a Cyclic Tag System: https://wiki.postgresql.org/index.php?title=Cyclic_
Tag_System&oldid=15106 (visited on 21.3.23).

1

https://wiki.postgresql.org/index.php?title=Cyclic_Tag_System&oldid=15106
https://wiki.postgresql.org/index.php?title=Cyclic_Tag_System&oldid=15106

on source-to-source translation into SQL.

In the following subsection, the DBMS we are to implement the machines in, as well as the
motivation behind the choice of them, will be briefly presented.

1.1. Relational Database Management Systems

In 1970, British IBM computer scientist Edgar F. Codd proposed the relational model, by which
data is expressed in terms of tuples or records grouped into tables or relations [10]. Since
then, this model has served as the theoretical foundation for a variety of DBMS, i.e., “software
system[s] that enable[...] users to define, create, maintain and control access to the database”
[11, p. 64]. Among these relational DBMS, the use of SQL to write and query data is common.
Although all derive from the same standard, each DBMS extends and syntactically adapts the
language in its own way, effectively creating different dialects of SQL.

1.1.1. PostgreSQL

The free and open-source relational DBMS PostgreSQL (also referred to as Postgres) is among
the most widely used.3 In addition to performance and robustness, its strong compliance with
the SQL standard and the wide array of features it offers, including a plethora of data types with
accompanying function libraries, it has the advantage of being very extensible by virtue of its
many APIs and language extensions.4 These reasons, along with its extensive documentation,5

make it the preferred DBMS at the Database Systems Research Group.

Therefore, we will primarily focus on Postgres (version 14.6) in our implementation of abstract
machines.

1.1.2. DuckDB

DuckDB [12] is an open-source, relational DBMS that was initially developed at the Database
Architectures Group6 at the Centrum Wiskunde & Informatica in Amsterdam. It is currently still
evolving, its source code being available for inspection and contribution on GitHub.7 One of
its main features is a columnar-vectorized query execution engine [13], which processes data in
batches instead of row by row and thus considerably reduces performance overhead compared
to traditional systems like Postgres.8

This performance advantage makes DuckDB of interest to us and we will therefore attempt to
implement some abstract machines in it (version 0.6.1), for which the system’s thorough docu-
mentation9 should be of help.
3Ranking fourth, see https://db-engines.com/en/ranking/relational+dbms (visited on 21.3.23).
4See https://www.postgresql.org/about/ (visited on 21.3.23).
5See https://www.postgresql.org/docs/14/index.html (visited on 21.3.23).
6See https://www.cwi.nl/en/groups/database-architectures/ (visited on 21.3.23).
7See https://github.com/duckdb/duckdb (visited on 21.3.23).
8See https://duckdb.org/why_duckdb (visited on 21.3.23).
9See https://duckdb.org/docs/sql/introduction (visited on 21.3.23).

2 Chapter 1. Introduction

https://db-engines.com/en/ranking/relational+dbms
https://www.postgresql.org/about/
https://www.postgresql.org/docs/14/index.html
https://www.cwi.nl/en/groups/database-architectures/
https://github.com/duckdb/duckdb
https://duckdb.org/why_duckdb
https://duckdb.org/docs/sql/introduction

1.1.3. Umbra

The relational DBMS Umbra, which is currently being developed at the Chair of Database Sys-
tems10 at the Technical University of Munich, offers yet another axis of performance improve-
ment: designed to synthesize in-memory and disk-based approaches (i.e., storing data on main
memory compared to storing it on external disks), it uses a combination of low-overhead buffer-
ing and variable-size pages to benefit from the efficiency of in-memory database systems while
simultaneously avoiding their size limitations [14].

Like DuckDB, Umbra suggests itself as a possible host system for abstract machine imple-
mentations due to its promising performance; but, although it is designed to be similar to Post-
greSQL,11 its being in development and closed-source, as well as the lack of any documentation,
may hinder implementation work.

A brief overview of database fundamentals having been given, Chapter 2 will introduce into
𝜆-calculus basics and broadly present the theory of the implemented machines. In Chapter 3,
we will develop different SQL implementations of these machines, whose performance will be
assessed and compared in Chapter 4. Chapter 5 will conclude this thesis and discuss future
possible work.

Throughout this thesis, implementation details will be referred to by linking to the correspond-
ing files and folders in the GitHub repository available under https://github.com/j-w-moebius/
abstract-machines-to-sql.

10https://db.in.tum.de/ (visited on 21.3.23).
11See https://umbra-db.com/ (visited on 21.3.23).

1.1. Relational Database Management Systems 3

https://github.com/j-w-moebius/abstract-machines-to-sql
https://github.com/j-w-moebius/abstract-machines-to-sql
https://db.in.tum.de/
https://umbra-db.com/

2
Abstract machines

Since one of the most influential abstract machines, the SECD machine, which we are set
out to implement in this thesis, was designed to interpret 𝜆-calculus, we will first discuss the
language (in a section that can be skipped by readers already familiar with it), before addressing
the machine itself, as well as an interesting alternative to it, the Krivine machine.

2.1. Overview on Lambda calculus

The origins of the formal system of 𝜆-calculus date back to the 1930s, where it was introduced
by Alonzo Church [15] as part of his work on formal logic. Indeed, its significance is not to be
underestimated, for it has since be proven to be Turing-complete [16] and serves as theoretical
foundation for functional programming languages [17, p. 5].

At the heart of the calculus is a formal language based on function abstraction and application,
which is easily definable in an inductive fashion. A 𝜆-term is either:

1. a numeric literal 𝑛,1

2. a variable 𝑥,
3. a function abstraction (𝜆𝑥.𝑡) or
4. a function application (𝑡1 𝑡2),

where 𝑡, 𝑡1, 𝑡2 are 𝜆-terms and 𝑥 any variable.

Some further terminology needs to be briefly introduced for use in later sections:

• The occurrence of a variable 𝑥 in an abstraction (𝜆𝑥.𝑡) is said to bind all free occurrences
of 𝑥 in 𝑡. An occurrence of a variable 𝑥 is said to be free in 𝑡 if it is not bound by any
𝜆-abstraction in 𝑡.

• A term is closed if it does not contain any free variables.

• 𝛽-reduction is the process of performing an actual function application, i.e., reducing the
term ((𝜆𝑥.𝑀) 𝑁) to 𝑀[𝑥 ∶= 𝑁] by substituting all free occurrences of 𝑥 in 𝑀 by 𝑁 [17].

• An evaluation strategy is a set of rules determining to which part of a complex 𝜆-term
𝛽-reduction is applied first. If a term cannot be further reduced by a particular strategy,
it is said to be in normal form. Literature abounds with different strategies and the types
of normal forms they reduce to [18], which we will not further explore in this thesis. If
referenced in the following sections, individual strategies will be explained. Let it suffice

1Numeric literals are not present in pure 𝜆-calculus, where one instead expresses them with functions, called Church
Numerals [17, p. 13]. The calculus presented here is extended for the sake of implementation.

5

𝜆𝑧.

𝜆𝑦.

𝑦 𝜆𝑥.

𝑥

𝜆𝑥.

𝑧 𝑥

Figure 2.1.: Tree-ish representation of the term (𝜆𝑧.(𝜆𝑦.(𝑦 (𝜆𝑥.𝑥))) (𝜆𝑥.(𝑧 𝑥))). The arrows link every
bounded variable occurrence to its binding occurrence.

to name the Weak Normal Form (WNF) and the Weak Head Normal Form (WHNF), who differ
in the absence, or presence, of reducible expressions in non-head, i.e., inner, positions.2

Some terms, like Ω = (𝜆𝑥.(𝑥 𝑥)) (𝜆𝑥.(𝑥 𝑥)), do not reach a normal form by any reduction
strategy.

• If two terms 𝑡1, 𝑡2 can be converted into each other by simple variable renaming (like (𝑥 𝑥)
and (𝑧 𝑧)), they are called 𝛼-equivalent.

An alternative representation of 𝜆-terms exists, where variables are denoted by natural-
numbered indexes instead of names. The index corresponds to the number of 𝜆-bindings in
scope between the variable and its own 𝜆-binding, which is best understood if one renders the
tree-ish structure of terms visible. For example, the term (𝜆𝑧.(𝜆𝑦.(𝑦 (𝜆𝑥.𝑥))) (𝜆𝑥.(𝑧 𝑥))) can be
represented as shown in Figure 2.1. Replacing every bound variable occurrence in the original
term with the number of 𝜆-bindings that lie between it and its binder in the tree (1 for 𝑧 and 0
for all the other variables), as well as omitting all binding occurrences, yields 𝜆(𝜆 0 (𝜆 0)) (𝜆 1 0),
which is called De Bruijn notation3 of the original term. It has the advantage of abstracting over
𝛼-equivalence and will be needed for the Krivine machine.

2.2. The SECD machine

In 1964, British Computer Scientist Peter John Landin (1930-2009), since known as a key figure
in the development of functional programming languages, described a “mechanical process for
obtaining the value, if it exists, of any given A[pplicative] E[xpression]4 [...]” [20, p. 316]. He for-
malized this process by first stating rules on how to evaluate a given 𝜆-term – as a compositional
evaluation function – before proposing a data structure with a transition function defining ex-
ecution steps on it, that together implement these rules [20, p. 316]. Reminding ourselves of
the definition from [3] stated in Chapter 1, it is not surprising that Landin’s data structure and
algorithm have since been labelled an abstract machine.

2See [18] for exact definitions of these two normal forms.
3Named after Dutch mathematician Nicolaas G. de Bruijn, who introduced it in [19].
4A 𝜆-term.

6 Chapter 2. Abstract machines

Stack Env. Control Dump Stack Env. Control Dump

𝑣 𝑒 □ □ ⟼ [Computation halts with result 𝑣.] (1)

𝑣 𝑒′ □ (𝑠, 𝑒, 𝑐) ∶ 𝑑 ⟼ 𝑣 ∶ 𝑠 𝑒 𝑐 𝑑 (2)

𝑠 𝑒 𝑛 ∶ 𝑐 𝑑 ⟼ 𝑛 ∶ 𝑠 𝑒 𝑐 𝑑 (3)

𝑠 𝑒 𝑥 ∶ 𝑐 𝑑 ⟼ 𝑒(𝑥) ∶ 𝑠 𝑒 𝑐 𝑑 (4)

𝑠 𝑒 (𝜆𝑥.𝑡) ∶ 𝑐 𝑑 ⟼ (𝜆𝑥.𝑡, 𝑒) ∶ 𝑠 𝑒 𝑐 𝑑 (5)

𝑠 𝑒 (𝑡1 𝑡2) ∶ 𝑐 𝑑 ⟼ 𝑠 𝑒 𝑡2 ∶ 𝑡1 ∶ apply ∶ 𝑐 𝑑 (6)

(𝜆𝑥.𝑡, 𝑒′) ∶ 𝑣 ∶ 𝑠 𝑒 apply ∶ 𝑐 𝑑 ⟼ □ 𝑒′[𝑥 ↦ 𝑣] 𝑡 (𝑠, 𝑒, 𝑐) ∶ 𝑑 (7)

Table 2.1.: The SECD machine’s state transition rules.6
□ denotes an empty stack, 𝑛 any numeric literal, 𝑥 any variable, 𝑒(𝑥) the value obtained by
looking up 𝑥 in 𝑒 and 𝑒[𝑥 ↦ 𝑣] the environment obtained by extending 𝑒 with the binding
𝑥 ↦ 𝑣 or, if 𝑥 is already bound in 𝑒, overwriting it. Furthermore, 𝑎 ∶ 𝑠 denotes an element 𝑎
on top of the remaining stack 𝑠.

The proposed data structure has four components, which, in retrospective, have given the
machine its name and are as follows:

• Stack:
The stack 𝑠 is a Last In First Out (LIFO) structure for intermediate results, holding any
number of evaluated terms (values). A value is either any primitive data 𝑛 – like numeric
constants – or, in case the evaluated expression is a 𝜆-abstraction, which cannot be further
reduced, a closure. A closure (𝜆𝑥.𝑡, 𝑒) is a pair consisting of an abstraction 𝜆𝑥.𝑡 and the
environment 𝑒 it is to be evaluated in.

• Environment:
The environment 𝑒 is a map-like structure that associates identifiers with their values,
i.e., consists of pairs 𝑥 ↦ 𝑣 of identifiers 𝑥 and values 𝑣, where each 𝑥 is unique in the
environment.

• Control:
The control 𝑐 is a LIFO structure for machine instructions, holding any number of directives.
A directive is either a 𝜆-term 𝑡 to be evaluated or the special apply directive.

• Dump:
The dump 𝑑 is a LIFO structure representing a call stack and holding any number of ma-
chine state snapshots, where the topmost is the one to return to once the current function
call is completed. These snapshots are described by triples (𝑠, 𝑒, 𝑐), also called frames,5 of
a stack, an environment and a control.

The transition rules given in Table 2.1 might provide a better understanding of these four
components’ role in the reduction of a 𝜆-term. Computation starts by injecting term 𝑡, which is
to be evaluated, with the initial state (□, ∅, 𝑡,□). It is easy to see that the topmost element of
5Terminology taken from [21].
6The presented rules are taken from [22, p. 8] with some slight modifications, i.e., the absence of rules concerning primitive

2.2. The SECD machine 7

the control stack essentially determines which rule is applied, with the exception of rules (1) and
(2), that are dispatched according to the dump. Assuming the injected term to be well-formed
and closed, the proposed data structure with its transition rules define a correct interpreter for
𝜆-calculus which, given an input term 𝑡, yields the WNF of 𝑡, if it exists, or never halts [23, p. 117].

• Rule (1) terminates computation when encountering an empty control and dump, returning
the stack’s topmost (and only) value as evaluation result.

• Rule (2) corresponds to the return from a function call. Since no directive is left on the
control stack, the machine adopts the (caller’s) stack, environment and control stored in
the dump’s topmost frame and the callee’s result 𝑣 is appended to the new stack.

• Rule (3) specifies what to do when the next directive on the control stack is a numeric
literal: it is simply put on top of the stack.

• Rule (4) does the equivalent for terms consisting of a single variable. Its value is looked
up in the current environment and again pushed onto the stack.

• In rule (5), the next directive is a term consisting of a 𝜆-abstraction, which is simply pushed
onto the stack as a closure, together with the current environment.

• Rule (6) handles terms which consist of function applications: the function and argument
term are both separately pushed onto the control stack, together with the special apply
directive.

• Rule (7) performs the actual function application. Upon encountering the apply directive
on the control stack, as well as a closure and an evaluated argument 𝑣 on the stack, the
closure’s environment is extended by binding the closure’s variable to 𝑣 and adopted as
new environment, the stack reset and the closure’s function body left to be evaluated as
control directive. Besides, the current stack, environment and control are saved on the
dump.

It is essential to note the order in which the terms are pushed on the control stack in rule (6),
by which the argument is evaluated before the function body. This use of the call-by-value [22,
p. 17] strategy makes the SECD machine an applicative order evaluator [23, p. 117].

2.3. The Krivine machine

When evaluating an expression ((𝜆𝑥.𝑡1) 𝑡2) with call-by-value, 𝑡2 is always evaluated (exactly)
once, before its value is bound to 𝑥 and 𝑡1 is evaluated. An alternative to this strategy consists of
evaluating 𝑡2 only during evaluation of 𝑡1, doing so each time 𝑥 occurs, which can be any number
of times (including zero, if 𝑥 does not occur in 𝑡1). This strategy is called call-by-name; and an
example of an abstract machine implementing it can be found in the Krivine machine, which
was, more than twenty years after its original formulation, introduced by French mathematician
Jean-Louis Krivine (∗1939) as a “particularly simple lazy machine which runs programs written in
𝜆-calculus” [24, p. 1]. Aside from the evaluation strategy, it mainly differs from the SECD machine

functions for the sake of simplicity.

8 Chapter 2. Abstract machines

Term Stack Env. Term Stack Env.

𝜆 𝑡 □ 𝑒 ⟼ [Computation halts with result (𝜆 𝑡, 𝑒)] (1)

(𝑡1 𝑡2) 𝑠 𝑒 ⟼ 𝑡1 (𝑡2, 𝑒) ∶ 𝑠 𝑒 (2)

𝜆 𝑡 (𝑢, 𝑒′) ∶ 𝑠 𝑒 ⟼ 𝑡 𝑠 (𝑢, 𝑒′) ∶ 𝑒 (3)

𝑛 + 1 𝑠 (𝑡, 𝑒′) ∶ 𝑒 ⟼ 𝑛 𝑠 𝑒 (4)

0 𝑠 (𝑡, 𝑒′) ∶ 𝑒 ⟼ 𝑡 𝑠 𝑒′ (5)

Table 2.2.: The Krivine machine’s transition rules.
Notation conventions are the same as in Table 2.1. 𝑡1, 𝑡2, 𝑡, 𝑢 are arbitrary 𝜆-terms and 𝑛 any
De-Bruijn index.

in that it is conceived to operate on 𝜆-terms in De-Bruijn notation.7 Furthermore, it operates on
pure 𝜆-calculus instead of on the extended one.
The Krivine machine’s state is defined by the following three components:
• Term:
The single 𝜆-term 𝑡 currently being evaluated.

• Stack:
The stack 𝑠 is a LIFO structure holding any number of closures, each of one containing a
term that is still to be evaluated. A closure is a pair (𝑡, 𝑒) of an arbitrary8 𝜆-term 𝑡 and an
environment 𝑒.

• Environment:
The current environment 𝑒, which is a stack of closures.

The transition rules are presented in Table 2.2. Computation is started by injecting a term 𝑡 via
the initial state (𝑡,□,□). It can be shown that this machine computes the WHNF for an input
term 𝑡, if it exists, or does not terminate otherwise [24].

• Rule (1) terminates computation when encountering an empty stack and a 𝜆-abstraction
in the term component, returning a closure consisting of the abstraction and the current
environment as evaluation result.

• Rule (2) handles function applications: the argument term is pushed onto the stack, to-
gether with the current environment, and the machine proceeds with evaluating the func-
tion term.

• Rule (3) handles 𝜆-abstractions by transferring the stack’s topmost closure to the environ-
ment. Then, the function body is evaluated.

• Rule (4) handles any non-zero De-Bruijn index: it is decremented by one and the environ-
ment is popped.

• Rule (5) replaces a zero index with the term in the environment’s topmost closure and
proceeds to evaluate it in the environment stored in the same closure.

7Krivine uses a variant of De-Bruijn indixes, which shows to be easily convertible to standard De-Bruijn notation. This
allows for a simpler representation of the machine structure and rules, as in [25, p. 66], on Table 2.2 is based.

8Differing from the SECD machine, where closures are based on 𝜆-abstractions.

2.3. The Krivine machine 9

In these rules, the machine’s call-by-name nature becomes apparent: any function argument
is not evaluated at once (as the SECD machine does it), but instead saved on the stack by rule
(2), from where it will be transferred to the environment by rule (3). Rules (4) and (5) will again
fetch it from the environment every time it is needed.

2.4. Other machines

The Krivine machine is only one among a plethora of alternatives to the SECD machine. As
illustrated by [22], many structural derivations of the SECD machine can be built by omitting one
or several of its components or changing its evaluation strategy.

Furthermore, other machines may operate on richer languages, like the CESK machine [26],
which interprets a language supporting mutation and first-class continuations, among others.
Although this kind of machine could also have been addressed in this work as far as imple-
mentation is concerned, the generation of correct example programs in these more complex
languages for testing purposes would have made it significantly more difficult, which is why we
restrict ourselves to the SECD and the Krivine machine.

10 Chapter 2. Abstract machines

3
Implementation

Essentially, the machines presented in the previous chapter are characterized by the nested
data types defining their structure and the transition rules pattern-matching on their structure’s
state. Hence, implementing themmay seem an easy task if undertook in a language with natural
support of recursion, algebraic data types and pattern matching. However, SQL supports these
features only within limits and thus poses a greater challenge, whose difficulty furthermore
varies with the particularities of different DBMS. Starting with PostgreSQL, we will develop the
main ideas behind any SQL implementation of both the SECD and the Krivine machine, before
showing that efficient representation of environments is difficult within the limits of Vanilla
PostgreSQL. Therefore, we will develop a variant which makes use of a hash table extension, as
well as some implementations in other, newer DBMS.

3.1. Vanilla PostgreSQL

3.1.1. Input format and data types

Before addressing their evaluation, one must first find a way to represent 𝜆-terms as such in
relational databases. Translating the definition in Section 2.1 into a Haskell-style type definition
reveals that any sensible type for 𝜆-terms must make use of product, sum and recursive types:

data Term = Lit Int
| Var String
| Lam String Term
| App Term Term

For product types T = (T₁, ,Tₙ), whose values consist of tuples (t₁, ,tₙ) with tᵢ of type
Tᵢ for all i ∈ {1, ..., 𝑛}, PostgreSQL’s composite or row types can be used.1 These can be created
with CREATE TYPE t AS (column_name₁ T₁, , column_nameₙ Tₙ);. Unfortunately, PostgreSQL
does not offer any equivalent for sum types T = T₁ | | Tₙ, whose values can be of one
of the types T₁, ..., Tₙ. Instead, they can be simulated by using composite types and setting all
columns to null except for the one whose type the expressed value is of.
Recursive types pose still a greater challenge, since PostgreSQL forbids their definition. One

viable solution is to represent recursion via intra-table reference: instead of holding a subterm
itself, the corresponding column in the terms table will only hold a reference to the one of its
other entries that represents the subterm. Listing 3.1 shows the definition of table terms and
its accompanying types that result from such an approach. FOREIGN KEY constraints would be
1See https://www.postgresql.org/docs/current/rowtypes.html (visited on 21.3.23).

11

https://www.postgresql.org/docs/current/rowtypes.html

{"app":
{"fun":
{"lam":
{"var": "x",
"body":
{"var": "x"}}},

"arg":
{"lit": 42}}}

terms
id lit var lam app
1 □ x □ □
2 □ □ (x,1) □
3 42 □ □ □
4 □ □ □ (2,3)

Figure 3.1.: JSON (left) and tabular (right) representation of the term ((𝜆𝑥.𝑥) 42). In table terms, the root
term is highlighted and □ stands for null.

appropriate, but are difficult to enforce, since self-reference only takes place in nested sub-
columns.

1 CREATE DOMAIN term AS integer;
2 CREATE DOMAIN var AS text;
3 CREATE TYPE lam AS (ide var , body term);
4 CREATE TYPE app AS (fun term , arg term);

5 CREATE TABLE terms (id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY , lit int ,
var var , lam lam , app app);

Listing 3.1: PostgreSQL type and table definitions for the language of extended 𝜆-calculus used for the
SECD machine.

Although this design solves the problem of internal term storage for the evaluation process,
it does however not provide a practical way of inputting terms: in order to set up this tabular
representation, terms have to be decomposed into individual subterms, which must be inserted
into the table in an order guaranteeing referential integrity. While this can be achieved by a
recursive User-Defined Function (UDF), such a function still needs an input type allowing for
the expression of recursive data structures which are nested to an arbitrary, but limited depth.
Admittedly, one could opt for a textual representation, but we prefer to rely on the existing
PostgreSQL parsers for JavaScript Object Notation (JSON)2 and decide to encode terms in JSON
for initial input. Figure 3.1 provides an example of this and the tabular encoding. Implementing
the procedure load_term(t jsonb) is now relatively straightforward. The result can be seen in
Listing 3.2.

1 CREATE FUNCTION load_term(t jsonb) RETURNS term AS
2 $$
3 INSERT INTO terms(lit , var , lam , app) (
4 SELECT new.*
5 FROM jsonb_each(t) AS _(type , content),
6 LATERAL (
7 -- Case 1: Term is literal
8 SELECT lit , null , null , null
9 FROM jsonb_to_record(t) AS _(lit int)

10 WHERE type = 'lit'

11 UNION ALL
12 --Case 2: Term is variable
13 SELECT [...]

2See https://www.postgresql.org/docs/current/datatype-json.html (visited on 21.3.23).

12 Chapter 3. Implementation

https://www.postgresql.org/docs/current/datatype-json.html

14 UNION ALL
15 -- Case 3: Term is λ-abstraction
16 SELECT null , null , row(var , load_term(body))::lam , null
17 FROM jsonb_to_record(content) AS _(var var , body jsonb)
18 WHERE type = 'lam'

19 UNION ALL
20 -- Case 4: Term is function application
21 SELECT [...]

22) AS new(lit , var , lam , app)
23)
24 RETURNING id
25 $$
26 LANGUAGE SQL VOLATILE;

Listing 3.2: Excerpt of a PostgreSQL recursive UDF that loads a term from JSON into tabular
representation in table terms. Cases 2 and 4 are analogous to cases 1 and 3, respectively.
The full code can be inspected in Vanilla-PSQL/SECD/definitions.sql:33.

The question of term representation and import being settled, we will proceed with our ma-
chine implementations.

3.1.2. SECD machine

All of the discussed machines adhere to the following simple control flow:

1 while current machine state is not of final form do
2 apply transition rule
3 end

An implementation of such a loop in SQL can be achieved by using SQL:1999’s WITH RECURSIVE
and following the pattern shown in Listing A.1. In this design, the Common Table Expression
(CTE) r models the machine’s state and each of its iterations represents a single step in the
evaluation process.

1 -- CREATE TYPE env AS ???
2 CREATE TYPE primitive AS ENUM('apply ');
3 CREATE TYPE closure AS (v var , t term , e env); -- Closure = (Var , Term , Env)
4 CREATE TYPE val AS (c closure , n int); -- Val = Closure | Int
5 CREATE DOMAIN stack AS val [];
6 CREATE TYPE directive AS (t term , p primitive); -- Directive = Term | Primitive
7 CREATE DOMAIN control AS directive [];
8 CREATE TYPE frame AS (s stack , e env , c control); -- Frame = (Stack , Env , Control)
9 CREATE DOMAIN dump AS frame [];

10 CREATE TYPE machine_state AS (s stack , e env , c control , d dump);

Listing 3.3: PostgreSQL type definitions for the SECD machine.

Next comes the question of representing the machine’s architecture in terms of a set of rig-
orous type declarations. While the LIFO structures of stack, control and dump can be imple-
mented using PostgreSQL arrays,3 yielding the type definitions in Listing 3.3, environments are
more difficult to grasp. Again, examining the data structure in Haskell-style can help uncover
the structural complexity:
3See https://www.postgresql.org/docs/14/arrays.html (visited on 21.3.23).

3.1. Vanilla PostgreSQL 13

https://github.com/j-w-moebius/abstract-machines-to-sql/blob/main/Vanilla-PSQL/SECD/definitions.sql##L33
https://www.postgresql.org/docs/14/arrays.html

data Env = [(String , Val)]
data Val = Closure

| Int
data Closure = Clo Var Term Env

The mutual recursion between types Env and Closure, through Val, calls for a self-referential
approach similar to the one in Subsection 3.1.1. However, unlike the static table terms, which
is not modified after the initial term import, a potential environments table would be dynamic
in that the machine’s transition rules would require it to change during term evaluation. Fur-
thermore, later rule applications would rely on the environment modifications made by ear-
lier applications. Thus, the evaluation query would perform inserts on the external table
environments while simultaneously relying on the visibility of these changes. Unfortunately,
the Atomicity, Consistency, Isolation, Durability (ACID) properties all database transactions ful-
fill4 [27] make such a query unfeasible.5 This restriction leaves us with two options: either
finding a representation of environments which works internally, i.e., within the recursive CTE,
or working around ACID. We will start by pursuing the former.

So far, the recursive CTE r holds one single row per iteration, representing the current machine
state. In addition to this single machine_state row, an arbitrary number of env_entry rows can be
added, representing the entries of a virtual environments table. On account of WITH RECURSIVE’s
semantics, by which the recursive query can only access the rows produced in the previous
iteration, these environment rows must be passed from one iteration to the next, and modified
according to the applied rule.

As we recall from the transition rules in Table 2.1, two functions on environments need to be
considered: lookup and extension, needed in rules (4) and (7). Unlike variable lookup, which
is read-only, extension modifies an environment by adding or replacing a binding. Additionally,
one needs to consider that, in rules (2) and (7), environments which are saved in closures on
the stack or in frames on the dump need to be restored.

For the sake of example, let us consider the environment {(𝑥, 42)}, first extend it by the binding
(𝑦, 41) and then by (𝑥, 3), which overwrites the initial binding of 𝑥. After this, the initial environ-
ment {(𝑥, 42)} is restored from a closure and extended with (𝑦, 7). A first intuitive implementation
approach suggests copying the environment which is being extended before adding a new bind-
ing to it, which would result in the environments table shown in Figure 3.2. However, this causes
a significant performance overhead for extension. A second approach can be found in repre-
senting environments as a Directed Acyclic Graph (DAG), where extending 𝑒means adding a new
binding which points to its ancestor 𝑒 via self-reference in column parent, resulting in the tree
and table shown in Figure 3.3 for our example.

Yet, such a performance gain in extension may come at cost of a less efficient lookup, since
instead of accessing the environments table once, it has to be accessed multiple times through-
out graph traversal until the looked up variable is found. Testing, however, has shown that the

4In particular, PostgreSQL has been ACID-compliant since 2001, see https://www.postgresql.org/about/ (visited on 21.3.23).
5In the scenario [𝑇1 start ... [𝑇2 start ... 𝑇2 end] 𝑇1 end], where 𝑇1 is the overall query transaction and 𝑇2 a writing
transaction caused by an invoked INSERT INTO statement, transaction isolation forbids 𝑇1 to see changes introduced by
𝑇2 (see https://www.postgresql.org/docs/14/transaction-iso.html, visited on 21.3.23).

14 Chapter 3. Implementation

https://www.postgresql.org/about/
https://www.postgresql.org/docs/14/transaction-iso.html

environments
id name val
1 x 42
2 x 42
2 y 41
3 x 3
3 y 41
4 x 42
4 y 7

Figure 3.2.: environments table, as obtained when extending environments by copying in the discussed
example.

id name val
1 x 42

4 y 7 2 y 41

3 x 3

environments
id name val parent
1 x 42
2 y 41 1
3 x 3 2
4 y 7 1

Figure 3.3.: Environments (left in DAG form, right in resulting tabular form), as obtained when extending
them by reference and using a DAG representation in the discussed example.

second approach prevails nonetheless, as it is 50-100× faster than the first, which is therefore
discarded. We can thus finalize the type definitions in Listing 3.3 by adding CREATE DOMAIN env
AS integer; and CREATE TYPE env_entry AS (id env, name var, val val, parent env);.
Environment representation being settled, we can now modify the pattern in Listing A.1 in or-

der to handle environments within the CTE. For this, we add the additional column new_env_entry
to step, which contains the new entry by which an environment is to be extended, and augment
the WITH expression by the CTE new_envs, whose purpose is to select the new environment en-
tries from the ones of the previous iteration according to the rule applied in step. The resulting
pattern is shown in Listing A.2. Substituting the specific details of the SECD rules for the place-
holders injection_exprᵢ, ruleᵢ_exprⱼ, etc., as well as implementing variable lookup with the
recursive subquery shown in Listing 3.4 gives a correct Vanilla PostgreSQL implementation of
the SECD machine.

Environment ids can be kept track of using PostgreSQL SEQUENCEs, as can be seen in
Vanilla-PSQL/SECD/. Example terms in JSON representation can be found in term_examples.txt
and an example evaluation is provided in Table B.4.

1 WITH RECURSIVE s(parent ,name ,val) AS (
2 -- traverse environment tree , starting from env
3 SELECT e.parent , e.name , e.val
4 FROM environments AS e
5 WHERE e.id = env

6 UNION ALL

3.1. Vanilla PostgreSQL 15

https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/Vanilla-PSQL/SECD
https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/term_examples.txt

7 SELECT e.parent , e.name , e.val
8 FROM s JOIN environments AS e(id ,name ,val ,parent)
9 ON s.parent = e.id

10 WHERE s.name <> variable_name) -- stop as soon as variable_name is found
11 SELECT s.val
12 FROM s
13 WHERE s.name = variable_name

Listing 3.4: Recursive PostgreSQL subquery that looks up the value of variable_name in environment
env, SECD machine.

3.1.3. Krivine machine

Implementing the Krivine machine requires several alterations to our SECD code: first of all,
table terms needs to be adapted to the De-Bruijn notation and the absence of numeric literals.
Second, type definitions need to be accommodated to the different machine structure. Since
environments and closures are mutually recursive, a self-referencing, virtual environments table
is going to be needed again. Additionally, the DAG approach shown in Figure 3.3 lends itself
ideally to environments now being defined as stacks of closures. Listing 3.5 summarizes the
ensuing definitions.

1 CREATE TABLE terms (id integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY , i int , lam
term , app app);

2 CREATE TYPE closure AS (t term , e env); -- Closure = (Term , Env)
3 CREATE DOMAIN stack AS closure [];
4 CREATE TYPE machine_state AS (t term , s stack , e env);
5 CREATE TYPE env_entry AS (id env , c closure , parent env);

Listing 3.5: PostgreSQL type definitions for the Krivine machine.

Subsequently, one merely has to instantiate the pattern in Listing A.2 with expressions derived
from the rules in Table 2.2. In doing so, particular attention needs to be devoted to rules (4) and
(5): while all other rules write an existing subterm to the term component, rule (5) modifies
an index value from 𝑛 to 𝑛 − 1, thus creating a new term. This conflicts with our approach
of representing terms in an invariant external table. Closer examination, however, reveals that,
though presented separately, rules (4) and (5) jointly implement the Krivine-machine equivalent
of variable lookup, i.e., the access of the environment’s 𝑛 + 1-th closure upon encountering De-
Bruijn index 𝑛 in the term component. Therefore, they can be implemented jointly by a recursive
subquery, as shown in Listing 3.6, avoiding the aforementioned issue of term alteration.

1 WITH RECURSIVE s(e,n) AS (
2 -- traverse the environment tree , starting from env
3 SELECT env ,i

4 UNION ALL

5 SELECT e.parent ,s.n - 1
6 FROM s JOIN environments AS e(id ,c,parent)
7 ON s.e = e.id
8 WHERE s.n > 0 -- stop after i steps
9)

16 Chapter 3. Implementation

10 SELECT s.e
11 FROM s
12 WHERE s.n = 0

Listing 3.6: Recursive PostgreSQL subquery that returns a reference to the i+1-th closure of
environment env, Krivine machine.

The rest of the implementation is straightforward and can be inspected in
Vanilla-PSQL/Krivine/. Table B.2 provides an example evaluation.

3.2. PostgreSQL with hash table extension

As we have seen in the previous section, the representation of environments poses a major
problem, which hitherto we have solved within the recursive CTE, presumably at cost of perfor-
mance due to the expensive copying of env_entry rows from iteration to iteration. Moreover,
CTEs are temporary tables without indexes6, which makes lookup comparatively slow. For this
reason, [28] has explored the benefit of simulating CTE indexes with the help of a PostgreSQL
hash table extension, which was developed by Denis Hirn at the Database Systems Research
Group. Fortunately, this extension also provides a way to work around the restrictions imposed
by ACID. The following section will show how relying on it considerably simplifies implementa-
tion of abstract machines and hopefully improves their performance.

3.2.1. Hash table extension

The Postgres hash table extension implements globally accessible hash tables using the type
TupleHashTable.7 As presented in [28, Ch. 3] in more detail, it provides the functions

• prepareHT(tableId, numOfKeyColumns, colTypes) to create a hash table,

• insertToHT(tableId, override, rowToInsert) to insert a row into a hash table or override
it and

• lookupHT(tableId, upsert, keyColumns) to retrieve a row from a hash table.

Implemented in C, the stateful extension allows for circumventing transaction isolation. How-
ever, we shall not use it without the explicit mention that such an extension not only breaks ACID,
but also SQL’s declarativity [29, p. 2] (since programs now specify a form of control flow) . Yet, we
consider these to be necessary concessions in view of the expected performance improvement,
and proceed with implementing hash-table-based variants of the abstract machines.

3.2.2. SECD and Krivine machine

First, a hash table needs to be set up with column types corresponding to the env_entry
type used in Section 3.1. For the SECD machine, e.g., this is done with SELECT prepareHT(1, 1,
null env, null var, null val, null env);. Since we can now rely on the external
6See https://www.postgresql.org/docs/14/queries-with.html (visited on 21.3.23).
7See https://doxygen.postgresql.org/execnodes_8h_source.html#l00768 (visited on 21.3.23).

3.2. PostgreSQL with hash table extension 17

https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/Vanilla-PSQL/Krivine
https://www.postgresql.org/docs/14/queries-with.html
https://doxygen.postgresql.org/execnodes_8h_source.html#l00768

hash table to model the environments, the simpler pattern expressed in Listing A.1 suffices,
which can be instantiated by using the same machine-specific expressions as in Section 3.1 for
the most part, with the exception of all environment-interacting rules: having replaced the CTEs
environments and new_envs with the external hash table, appropriate inserts and lookups have
to be formulated. Listings 3.7 and 3.8 show the result for the affected SECD rules, which yield
the hash-table-based SECD implementation in Hashtables/SECD/.

1 WITH RECURSIVE s(parent ,name ,val) AS (
2 SELECT e.parent , e.name , e.v
3 FROM lookupHT(1,false ,env) AS e(_ env , name var , v val , parent env)

4 UNION ALL

5 SELECT e.parent , e.name , e.v
6 FROM s,
7 LATERAL lookupHT(1,false ,s.parent) AS e(_ env , name var , v val , parent env)
8 WHERE s.name <> variable_name
9)

10 SELECT s.val
11 FROM s
12 WHERE s.name = variable_name

Listing 3.7: Hash-table-based lookup of variable_name in environment env, SECD machine.

1 SELECT [...],
2 (SELECT new_env
3 FROM (SELECT nextval('env_keys ')::env) AS _(new_env),
4 LATERAL insertToHT (1, true , new_env , closure.v, arg , closure.e)), [...]
5 FROM machine AS ms ,
6 LATERAL (SELECT ms.s[1].c.*) AS closure(v,t,e),
7 LATERAL (SELECT ms.s[2]) AS _(arg),
8 [...]

Listing 3.8: Hash-table-based rule (7), SECD machine, excerpt. The LATERAL FROM-entry in l. 4 performs
the desired environment extension.

The Krivine machine can be implemented in the same fashion, as can be seen in
Hashtables/Krivine/.

3.3. Other DBMS

Having found that implementing abstract machines in PostgreSQL requires quite a few clever
workarounds, one might wonder about the situation in other DBMS. Furthermore, the question
of performance is of particular interest to us. We therefore decide to attempt implementations
in DuckDB and Umbra – both of which are DBMS that are in the making and promising with
regards to performance – although we are well aware that their being in development will hinder
implementation work.

Since the difficulties regarding the representation of environments encountered in Section 3.1
are rooted in DBMS-independent design principles – like ACID – we can expect to encounter them
again and therefore start with the pattern in Listing A.2, which we will adapt to the particularities
of the different DBMS, as sketched in the following subsections.

18 Chapter 3. Implementation

https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/Hashtables/SECD
https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/Hashtables/Krivine

1 q₁

2 UNION ALL

3 q₂;

1 WITH
2 one(a,b) AS (
3 q₁
4),
5 two(a,b) AS (
6 q₂
7)

8 SELECT COALESCE(one.a, two.a), COALESCE(one.b, two.b)
9 FROM (SELECT (SELECT a FROM one), (SELECT b FROM one)) AS one(a,b),

10 (SELECT (SELECT a FROM two), (SELECT b FROM two)) AS two(a,b);

Figure 3.4.: Original UNION query (left) and rewritten, UNION-less query (right).
q₁, q₂ are arbitrary queries that yield two columns each, matching in type. Equivalence of
this rewrite only holds in a scenario where one of q₁, q₂ yields a single row and the other
yields none: ll. 9 and 10 produce a single row for each of q₁, q₂’s results, replacing the
empty one by a null row. Other rewrites can be found for other scenarios.

3.3.1. DuckDB

Upon inspection of DuckDB’s documentation, the tagged UNION type8 stands out as a promis-
ing way of implementing sum types, whereas STRUCTs (the equivalent of PostgreSQL’s row type)
ideally lend themselves to product types and LISTs (that of arrays) can be used for the rep-
resentation of stacks. Unfortunately, nested composition of types via subsequent CREATE TYPE
statements shows not to be working, which forces us to write out the entire type definition in a
nested expression, as can be seen in Listing 3.9.

1 STRUCT(s UNION(c STRUCT(v text , t integer , e integer), n int)[],
2 e integer ,
3 c UNION(t integer , p primitive)[],
4 d STRUCT(s UNION(c STRUCT(v text , t integer , e integer), n int)[],
5 e integer ,
6 c UNION(t integer , p primitive)[]) [])

Listing 3.9: A DuckDB type for the SECD machine_state.

UNION types allow us to store information in table terms in a single column instead of spreading
it over multiple, as we did in PostgreSQL.
Another major hindrance is the missing implementation of the SQL UNION operator within

recursive CTEs, of which the pattern in Listing A.2 makes heavy use. As illustrated in Figure 3.4,
the use of UNIONs can be avoided, but the resulting queries are of poor readability and, possibly,
efficiency.
Environment extension must be done using the copying approach, as illustrated in Figure

3.2, since recursive CTEs within recursive CTEs, as needed for variable lookup in the previously
used DAG-style environment extension (see Listing 3.7), are not permitted. Missing support of
recursive CTEs in correlated subqueries and of recursive UDFs additionally handicap term import
and evaluation. We solve the former by letting PostgreSQL create tabular representations of
terms and importing them into DuckDB via .csv files, and the latter by automatically writing
individual evaluation queries for every term to a .sql file with the use of the stream editor sed.
8See https://duckdb.org/docs/sql/data_types/union (visited on 21.3.23).

3.3. Other DBMS 19

https://duckdb.org/docs/sql/data_types/union

The resulting DuckDB implementation of the SECD machine can be inspected in DuckDB/SECD/.
We will not pursue Krivine machine implementation in view of the SECD machine’s poor perfor-
mance discussed in Chapter 4.

3.3.2. Umbra

Umbra’s type system shows to be even less promising than DuckDB’s, since CREATE TYPE
statements are not supported yet, rendering the definition of nested data types impossible.
This enforces a “flat” design on the recursive CTE, e.g., for the Krivine machine,

WITH RECURSIVE r(finished, ms_t, ms_s, ms_e, e_id, e_c_t, e_c_e, e_p, env_key),

in which the original nested design can only be hinted at by column naming. Column
env_key compensates for the missing implementation of SEQUENCEs and holds the next integer
to be used as environment ID.

Moreover, no row constructor has been implemented yet. This forces us to represent stacks
of tuples (𝑎1, 𝑏1) ∶ (𝑎2, 𝑏2) ∶ ... either as single stacks of values – possibly being of different types,
which would require us to wrap them in a common type, like text – 𝑎1 ∶ 𝑏1 ∶ 𝑎2 ∶ 𝑏2 ∶ ..., or as
separate stacks 𝑎1 ∶ 𝑎2 ∶ ... and 𝑏1 ∶ 𝑏2 ∶ Since we want our code to stay within the limits of
readability, we choose to implement the simpler Krivine machine, whose structure agrees well
with the first of the the aforementioned variants.

Apart from this, the implementation is similar to our PostgreSQL one. As with DuckDB, we let
PostgreSQL handle term import. The result, a Krivine machine implementation in Umbra, can
be inspected in Umbra/Krivine/.

20 Chapter 3. Implementation

https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/DuckDB/SECD
https://github.com/j-w-moebius/abstract-machines-to-sql/tree/main/Umbra/Krivine

4
Evaluation

In the implementation variants described in the previous chapter, performance considera-
tions played a key role. Therefore, it remains to be verified whether indeed the use of the hash
table extension brings about the expected speedup, and how DuckDB or Umbra compare to
PostgreSQL.

Before actual evaluation runtimes can bemeasured and discussed, we first need to determine
which terms to test our machines on and develop an appropriate testing set-up.

4.1. Setup

4.1.1. Term generation

Since the few hand-picked example terms used for development so far cannot suffice to
assess the performance of our implementations and no corpus of 𝜆-terms is to be found online,
we have no choice but to generate term sets ourselves. Bendkowski’s Lambda sampler1 [30],
which offers random, Boltzmann-sampling-based [31] generation of 𝜆-terms of arbitrary depth,
can be used to this end. Implemented in Haskell, the sampler provides an option for generating
only closed terms, as well as an interface for rejection-based filters. We use both to ensure that
the generated terms are closed and reducible:2 the former is needed because the implemented
machines are not designed to deal with free variable occurrences, the latter because at least a
few reduction steps need to be performed if performance is to be evaluated.

Bendkowski’s sampler outputs terms in De-Bruijn notation represented as an Algebraic Data
Type (ADT) in Haskell. Since the SECD machine operates on standard, variable-based nota-
tion, we first need a mean of conversion between the different notations. Therefore, we im-
plement the function toLambdaVar Lambda LambdaVar, which converts a given term of type
Lambda – the provided, index-based representation – to one of type LambdaVar – our own ADT for
variable-based terms, whose definition corresponds to the one sketched in Section 3.1.1. Further-
more, we need functions lambdaToJSON Lambda String and lambdaVarToJSON LambdaVar

String, that convert the ADT representations to JSON. These Haskell functions can be found
in Generation/Generator.hs.
Early testing showed that our machine implementations didn’t halt on some of the generated

terms within several minutes of computation. This is hardly surprising, as the machines are not

1See https://github.com/maciej-bendkowski/lambda-sampler (visited on 21.3.23).
2For instance, reducibility can be ensured by checking whether a term is of form (𝜆𝑥.𝑡1) 𝑡2 .

21

https://github.com/j-w-moebius/abstract-machines-to-sql/blob/main/Generation/Generator.hs
https://github.com/maciej-bendkowski/lambda-sampler

Input: number of terms to generate 𝑛, boundaries on # of evaluation steps 𝑚𝑖𝑛 and 𝑚𝑎𝑥
Output: set 𝑇 of 𝑛 terms

1 𝑐𝑡𝑟 ← 0, 𝑇 ← ∅
2 while 𝑐𝑡𝑟 < 𝑛 do
3 generate term set 𝑇𝑛𝑒𝑤 of size 𝑛 − 𝑐𝑡𝑟
4 𝑇𝑛𝑒𝑤 ← {𝑡 ∈ 𝑇𝑛𝑒𝑤 | 𝑚𝑖𝑛 ≤ 𝑠𝑡𝑒𝑝𝑠𝑀(𝑡) ≤ 𝑚𝑎𝑥}
5 𝑇 ← 𝑇 ∪ 𝑇𝑛𝑒𝑤
6 𝑐𝑡𝑟 ← 𝑐𝑡𝑟 + |𝑇𝑛𝑒𝑤|
7 end
8 return 𝑇
Algorithm 1: Sieving algorithm for generation of terms with specific reduction behavior. The
function 𝑠𝑡𝑒𝑝𝑠𝑀 in l. 4 maps any 𝜆-term 𝑡 to the number of steps a particular machine 𝑀
needs to reduce it to normal form.

guaranteed to halt on terms which do not possess a normal form, like Ω. A 𝜆-term 𝑡’s normal-
ization behavior under a particular evaluation strategy 𝑠 is a non-trivial – certain terms reach
normal form under 𝑠, while others don’t – and semantic – it pertains to the behavior of a Turing
machine𝑀, which can be constructed to simulate the evaluation of 𝑡 under 𝑠 – property. Hence,
it is generally undecidable by Rice’s theorem [32, p. 398]. We therefore cannot, by means of
however sophisticated filters, configure the sampler to discard terms whose evaluation doesn’t
terminate. This calls for the number of evaluation steps to be limited upwards.

Closer examination further reveals that this has to be done separately for the SECD and the
Krivine machine, because evaluation strategy affects termination behavior. Consider the exam-
ple of 𝑡 = ((𝜆𝑥.(𝜆𝑦.𝑥)) Ω), which reduces to 𝑡′ = (𝜆𝑦.Ω) by weak head reduction. While this normal
form 𝑡′ is found by the lazy Krivine machine (that leaves Ω unevaluated), the SECD machine’s
call-by-value strategy evaluates Ω and subsequently never halts. In order to realize this upper
boundary on evaluation steps, we implement some variants (Generation/secd_interrupt.sql
and Generation/krivine_interrupt.sql) of our hash-table-based implementations, which abort
evaluation after a specified number of steps.

Conversely, the number of evaluation steps also has to be limited downwards if sufficient
term complexity is to be guaranteed.3 This results in the selection, or sieving, procedure
shown in Algorithm 1, that generates an arbitrary number of terms, given an upper and lower
bound on the number of evaluation steps. This algorithm can be implemented using a com-
bination of SQL and shell scripting, as can be seen in Generation/secd_generation.sh and
Generation/krivine_generation.sh. Specifically, the actual sieving in l. 4 relies on the variants
krivine_interrupt and secd_interrupt mentioned above.

4.1.2. Test sets

Equipped with the generation tools presented in the previous subsection, we can now proceed
with the creation of test sets. We decide to create four sets of 100 terms each and varying
execution difficulty, each covering a range of evaluation step numbers. Minimum and maximum

3Without the selection procedure described hereafter, most generated terms took no more than six steps to reach normal
form.

22 Chapter 4. Evaluation

https://github.com/j-w-moebius/abstract-machines-to-sql/blob/main/Generation/secd_interrupt.sql
https://github.com/j-w-moebius/abstract-machines-to-sql/blob/main/Generation/krivine_interrupt.sql
https://github.com/j-w-moebius/abstract-machines-to-sql/blob/main/Generation/secd_generation.sh
https://github.com/j-w-moebius/abstract-machines-to-sql/blob/main/Generation/krivine_generation.hs

∅ # of eval. steps ∅ env. size terms size𝑚𝑖𝑛 𝑚𝑎𝑥
SECD Krivine SECD Krivine SECD Krivine

I 1 25 11.3 6.46 2.06 2.55 26497 23894
II 25 200 65.5 58.76 12.9 20.47 25545 26519
III 200 1000 376.1 380.22 75.02 122.59 26731 27685
IV 1000 2000 1339.55 1384.64 267.71 447.91 34557 30703

Table 4.1.: Selected attributes of test sets I-IV:
the arguments 𝑚𝑖𝑛 and 𝑚𝑎𝑥 used for their generation with Algorithm 1, the average number
of evaluation steps per term, the average number of env_entry rows per term and the size
of table terms.

term depth used for the Lambda sampler is 100 and 1000, respectively. Generating terms with
significantly more than 1000 evaluation steps is time-consuming, since such terms are rare in the
Lambda sampler’s output. Although their frequency could be increased by raising term depth,
this would also lead to a far greater number of subterms and corresponding rows in table terms,
which would slow down evaluation and obstruct performance comparison. For this reason, we
choose not to generate any set with 𝑚𝑖𝑛 ≥ 2000.
Table 4.1 lists the generated sets along with some characterizing attributes.
As can be seen in the rightmost column, table terms holds a comparable number of rows for

each set (with the exception of set IV resulting in slightly more rows, since terms with many
evaluation steps tend to be deeper). Hence, we can assume its size and the scans on it (which
need to be performed at most once per iteration, as we recall from Subsection 3.1.2) not to affect
the following section’s performance comparison to a noticeable extent. Column “∅ env. size”
further reveals that the Krivine machine tends to create more environment entries than the
SECD machine, which can be attributed to the former’s call-by-name strategy.

4.2. Results and discussion

In the following, Umbra results can unfortunately not be presented nor discussed, since test-
ing is made impossible by the inexplicable presence of a Floating point exception. It appears
to only be raised when evaluating terms featuring De-Bruijn indexes of one or above, which sug-
gests a connection with the nested recursive CTE in rules (4) / (5). Indeed, a minimal working
example of recursive CTEs nested within each other yields incorrect results.
As for PostgreSQL and DuckDB, Table 4.2 shows evaluation times for term sets I-IV (all term

import having been done prior to timing). The givenmeasurements correspond to the median of
five runs, performed on PostgreSQL v14.6 and DuckDB v0.6.1. The database systems were hosted
on a 64-bit Linux machine with 96 AMD EPYC™ 7402 CPUs4 at 2.8GHz and 2TB of RAM.
At first sight, the extreme slowness of Duck:SECD is salient. Several factors can account for

this. First, it is the only implementation that extends environments by copying, which early
4Running top while testing reveals that only 100% of CPU, i.e., the equivalent of only one of 96 cores, is used, though.

4.2. Results and discussion 23

PG:SECD PG:Kri PG:HT:SECD PG:HT:Kri Duck:SECD

I 31.83 21.51 15.40 9.91 69773
II 166.39 181.42 53.18 43.08 257350
III 2958.47 4416.29 274.21 242.19 >10⁶
IV 30206.25 47386.21 1034.79 887.14 >10⁷

Table 4.2.: Evaluation runtimes in 𝑚𝑠. PG:SECD, PG:Kri designate Vanilla PostgreSQL implementations,
and PG:HT:SECD, PG:HT:Kri those relying on the hash table extension.

0 200 400

0

20

40

∅ # of env_entry rows per term

ru
nt
im

e
[𝑠]

PG:SECD
PG:Kri

0 200 400

0

500

1,000

∅ # of env_entry rows per term
ru
nt
im

e
[𝑚

𝑠]

PG:HT:SECD
PG:HT:Kri

Figure 4.1.: Evaluation runtimes of the four PostgreSQL implementations plotted against the average
environment sizes.

testing had already shown to be low-performing, even in PostgreSQL (but still 10× faster than
DuckDB). Second, the cumbersome rewrites compensating for the missing UNION operator in
recursive CTEs (see Section 3.3.1) might result in inefficient query plans. Third, as mentioned in
Subsection 1.1.2, DuckDB’s engine is specialized on processing rows in batches. Yet, the missing
support of recursive CTEs within correlated subqueries limits queries to evaluating nomore than
a single term each, which might prevent the engine from exploiting its full potential.
Comparing PG:SECD to PG:HT:SECD, or PG:Kri to PG:HT:Kri, reveals that the use of the hash

table extension indeed gives rise to a substantial speedup, reaching up to 53× for the Krivine
machine on set IV. This benefit even seems to compensate for the Krivine machine’s larger
number of environment entries, as PG:HT:Kri performs better than PG:HT:SECD despite of the
inverse holding for the Vanilla Postgres variants. As can be furthermore seen in Figure 4.1, the
PG:HT implementations’ runtimes increase approximately linearly with the average environment
size, whereas the Vanilla Postgres one’s evolve rather exponentially.
This discrepancy conforms to our expectations. We attribute it to the costly copying of an

increasing number of env_entry rows from iteration to iteration within the recursive CTE, as well
as to internal lookups in them, whose efficiency fades in comparison to the power of external
hash table lookups.
Lastly, it should be emphasized that the clocked executions solely consist of term evaluation,

consuming and producing tabular representations. Any conversion from or to nested represen-
tations (as JSON) requires additional work to be done.

24 Chapter 4. Evaluation

5
Conclusion

We have successfully implemented two types of abstract machines in PostgreSQL: the SECD
and the Krivine machine. For this, we have developed a tabular representation of terms, as well
as a general approach to realizing such machines in SQL. In doing so, we have found that the rep-
resentation of environments plays a crucial role and is neither easily nor efficiently achieved in
Vanilla PostgreSQL. Hence, we have proposed an alternative solution relying on an ACID-breaking
extension and seen that, indeed, outsourcing environment rows from recursive CTEs into an
external hash table results in sizeable speedup. We have attempted to prove feasibility of our
implementations in newer, potentially better-performing DBMS, but this is hindered by the miss-
ing support of certain syntactic constructs and the systems generally being unpolished, for still
in the making.

5.1. Future work

Some aspects of our implementations offer potential for improvement and further develop-
ment in future work:

• First, it has to be noted that our machines return references to volatile environments,
that stop existing once query execution is completed. This deficit could be remedied by
returning all environment rows in addition to the closure and, optionally, assembling these
to a nested, final JSON value for post-processing, with the help of table terms.

• We designed environment entries to be added, but not to be deleted, resulting in a con-
tinuous increase in their number during term evaluation. Yet, this could be avoided by
strategically garbage-collecting them (e.g., any environment not referenced in any of the
machine’s component can be safely deleted; but checking for this might be computation-
ally expensive and thus counter the benefits of garbage-collection).

• The poor performance of the Vanilla PostgreSQL abstract machines is in parts due to the
costly copying of environment rows from iteration to iteration, which is inevitable when
using SQL’s standard WITH RECURSIVE. Some elegant variations on the construct’s semantics
have been proposed and implemented in Postgres, some of which, like WITH ITERATIVEwith
upsert semantics [8, p. 2], suggest themselves for our purposes.

• DuckDB’s missing support of UNIONs within recursive CTEs constitutes a major limitation.
Filling this gap,1 as well as some others we encountered in our implementation attempt,
will allow to re-tackle abstract machines in DuckDB.

1During the final stages of writing this thesis, a fix for this had already been developed within the Database Systems
Research Group, but not yet included in the official DuckDB cli release, which was used for this work.

25

• The same holds for Umbra, which should be less burdensome to work with once develop-
ment will be further advanced.

Finally, it shall be emphasized that, in effect, we have built SQL-based interpreters of 𝜆-
calculus, which evaluate 𝜆-terms input in JSON notation. These interpreters could be extended
and modified to support more features and richer languages, where a possible starting point
could be Felleisen’s CEK machine [26]. In any case, this thesis has provided insights into the SQL
implementation of interpreting machines and the data structures they are built upon, which
might help inform future work on source-to-source translations into SQL.

26 Chapter 5. Conclusion

Bibliography

[1] Stephan Diehl et al. “Abstract machines for programming language implementation”. In: Fu-
ture Generation Computer Systems 16.7 (2000), pp. 739–751. URL: https://www.sciencedirect.
com/science/article/pii/S0167739X99000886.

[2] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured English Query Lan-
guage”. In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data De-
scription, Access and Control. SIGFIDET ’74. Ann Arbor, Michigan: Association for Computing
Machinery, 1974, pp. 249–264. URL: https://doi.org/10.1145/800296.811515.

[3] Maurizio Gabbrielli and Simone Martini. Programming Languages: Principles and
Paradigms. 1st. Undergraduate Topics in Computer Science. London: Springer, 2010.

[4] Lawrence A. Rowe and Michael Stonebraker. “The POSTGRES Data Model”. In: Proceedings
of the 13th International Conference on Very Large Data Bases. VLDB ’87. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1987, pp. 83–96.

[5] Denis Hirn and Torsten Grust. “One WITH RECURSIVE is Worth Many GOTOs”. In: Proceedings
of the 2021 International Conference on Management of Data. SIGMOD ’21. Virtual Event,
China: Association for Computing Machinery, 2021, pp. 723–735. URL: https://doi.org/10.
1145/3448016.3457272.

[6] Tim Fischer et al. “Snakes on a Plan: Compiling Python Functions into Plain SQL Queries”.
In: Proceedings of the 2022 International Conference on Management of Data. SIGMOD
’22. Philadelphia, PA, USA: Association for Computing Machinery, 2022, pp. 2389–2392. URL:
https://doi.org/10.1145/3514221.3520175.

[7] Tobias Burghardt et al. “Functional Programming on Top of SQL Engines”. In: Practical As-
pects of Declarative Languages: 24th International Symposium, PADL 2022, Philadelphia, PA,
USA, January 17–18, 2022, Proceedings. Philadelphia, PA, USA: Springer-Verlag, 2022, pp. 59–
78. URL: https://doi.org/10.1007/978-3-030-94479-7_5.

[8] Denis Hirn and Torsten Grust. “A Fix for the Fixation on Fixpoints”. In: Proceedings of the
13th Conference on Innovative Data Systems Research. CIDR ’23. Amsterdam, Netherlands,
2023. URL: https://www.cidrdb.org/cidr2023/papers/p14-hirn.pdf.

[9] SQL:1999 Standard. Database Languages–SQL–Part 2: Foundation. ISO/IEC 9075-2:1999.

[10] Edgar F. Codd. “A relational model of data for large shared data banks”. In: Communications
of the ACM 13.6 (1970), pp. 377–387. URL: https://dl.acm.org/doi/10.1145/362384.362685.

[11] Thomas M. Connolly and Carolyn E. Begg. Database Systems – A Practical Approach to
Design Implementation and Management. 6th. Essex, England: Pearson, 2014.

Bibliography 27

https://www.sciencedirect.com/science/article/pii/S0167739X99000886
https://www.sciencedirect.com/science/article/pii/S0167739X99000886
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/3448016.3457272
https://doi.org/10.1145/3448016.3457272
https://doi.org/10.1145/3514221.3520175
https://doi.org/10.1007/978-3-030-94479-7_5
https://www.cidrdb.org/cidr2023/papers/p14-hirn.pdf
https://dl.acm.org/doi/10.1145/362384.362685

[12] Mark Raasveldt and Hannes Mühleisen. “DuckDB: an Embeddable Analytical Database”.
In: Proceedings of the 2019 International Conference on Management of Data. SIGMOD
’19. Amsterdam, Netherlands: ACM, 2019, pp. 1981–1984. URL: https://duckdb. org/pdf/
SIGMOD2019-demo-duckdb.pdf.

[13] Timo Kersten et al. “Everything You Always Wanted to Know about Compiled and Vectorized
Queries but Were Afraid to Ask”. In: Proc. VLDB Endow. 11.13 (2018), pp. 2209–2222. URL: https:
//www.vldb.org/pvldb/vol11/p2209-kersten.pdf.

[14] Thomas Neumann and Michael J. Freitag. “Umbra: A Disk-Based System with In-Memory
Performance”. In: Proceedings of the 10th Conference on Innovative Data Systems Research.
CIDR ’20. Amsterdam, Netherlands, 2020. URL: http://cidrdb.org/cidr2020/papers/p29-
neumann-cidr20.pdf.

[15] Alonzo Church. “A Set of Postulates for the Foundation of Logic”. In: Annals of Mathematics
33.2 (1932), pp. 346–366. URL: http://www.jstor.org/stable/1968337.

[16] Alan M. Turing. “Computability and λ-Definability”. In: The Journal of Symbolic Logic 2.4
(1937), pp. 153–163. URL: http://www.jstor.org/stable/2268280.

[17] Henk Barendregt and Erik Barendsen. Introduction to Lambda Calculus. 2000. URL: https:
//www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf (visited on
12.3.2023).

[18] Małgorzata Biernacka et al. “The Zoo of Lambda-Calculus Reduction Strategies, And Coq”.
In: 13th International Conference on Interactive Theorem Proving (ITP 2022). Vol. 237. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, 7:1–7:19. URL: https : / / drops . dagstuhl . de / opus /
volltexte/2022/16716.

[19] Nicolas G. de Bruijn. “Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem”. In:
Indagationes Mathematicae (Proceedings) 75.5 (1972), pp. 381–392. URL: https : / / www .
sciencedirect.com/science/article/pii/1385725872900340.

[20] Peter J. Landin. “The Mechanical Evaluation of Expressions”. In: The Computer Journal 6.4
(1964), pp. 308–320. URL: https://doi.org/10.1093/comjnl/6.4.308.

[21] Michael Sperber and Herbert Klaeren. “Exkurs: Die SECD-Maschine”. In: Schreibe Dein
Programm! Einführung in die Programmierung. Periodically updated online book. 2023,
pp. 479–522. URL: https://www.deinprogramm.de/sdp/ (visited on 12.3.2023).

[22] Olivier Danvy. “A Rational Deconstruction of Landin’s SECD Machine”. In: BRICS Report Se-
ries 10.33 (2003). URL: https://tidsskrift.dk/brics/article/view/21801.

[23] Werner E. Kluge. “Abstract 𝜆-Calculus Machines”. In: Central European Functional Program-
ming School: Second Summer School, CEFP 2007, Cluj-Napoca, Romania, June 23-30, 2007,
Revised Selected Lectures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 112–157.
URL: https://www.informatik.uni-kiel.de/~wk/springer.pdf.

28 Bibliography

https://duckdb.org/pdf/SIGMOD2019-demo-duckdb.pdf
https://duckdb.org/pdf/SIGMOD2019-demo-duckdb.pdf
https://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
https://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://www.jstor.org/stable/1968337
http://www.jstor.org/stable/2268280
https://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf
https://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf
https://drops.dagstuhl.de/opus/volltexte/2022/16716
https://drops.dagstuhl.de/opus/volltexte/2022/16716
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/10.1093/comjnl/6.4.308
https://www.deinprogramm.de/sdp/
https://tidsskrift.dk/brics/article/view/21801
https://www.informatik.uni-kiel.de/~wk/springer.pdf

[24] Jean-Louis Krivine. “A Call-by-Name Lambda-Calculus Machine”. In: Higher Order Symbol.
Comput. 20.3 (2007), pp. 199–207. URL: https://doi.org/10.1007/s10990-007-9018-9.

[25] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Pro-
gramming. 2nd. Boston, MA: Birkhäuser Boston, 1993.

[26] Mattias Felleisen and Daniel P. Friedman. “A Calculus for Assignments in Higher-Order
Languages”. In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. POPL ’87. Munich, Germany: Association for Computing Machin-
ery, 1987, p. 314. URL: https://doi.org/10.1145/41625.41654.

[27] Theo Haerder and Andreas Reuter. “Principles of Transaction-Oriented Database Recovery”.
In: ACM Comput. Surv. 15.4 (1983), pp. 287–317. URL: https://doi.org/10.1145/289.291.

[28] Madeleine Mauz. “Using Postgres Hash Table Extension in Compiled Functional-Style SQL
UDFs”. MA thesis. Tübingen, Germany: Eberhard Karls Universität, 2022. URL: https://db.cs.
uni-tuebingen.de/theses/2022/madeleine-mauz/Masterarbeit_Madeleine_Mauz.pdf.

[29] Mark S. Miller et al. “Uncanny Valleys in Declarative Language Design”. In: 2nd Summit on
Advances in Programming Languages (SNAPL 2017). Vol. 71. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017, 9:1–9:12. URL: http://drops.dagstuhl.de/opus/volltexte/2017/7129.

[30] Maciej Bendkowski et al. Combinatorics of 𝜆-terms: a natural approach. 2016. URL: https:
//arxiv.org/abs/1609.07593.

[31] Philippe Duchon et al. “Boltzmann Samplers for the Random Generation of Combinatorial
Structures”. In: Combinatorics, Probability and Computing 13.4-5 (2004), pp. 577–625. URL:
https://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf.

[32] John E. Hopcroft et al. Introduction to Automata Theory, Languages, and Computation. 3rd.
Bposton, MA: Addison-Wesley, 2006.

Bibliography 29

https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/289.291
https://db.cs.uni-tuebingen.de/theses/2022/madeleine-mauz/Masterarbeit_Madeleine_Mauz.pdf
https://db.cs.uni-tuebingen.de/theses/2022/madeleine-mauz/Masterarbeit_Madeleine_Mauz.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7129
https://arxiv.org/abs/1609.07593
https://arxiv.org/abs/1609.07593
https://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf

Appendices

A. Listings

1 WITH RECURSIVE r(finished , mc₁ , ..., mcᵣ) AS (

2 SELECT false , inj_expr₁ , ..., inj_exprᵣ -- inject term into machine

3 UNION ALL (

4 WITH
5 machine(mc₁ , ..., mcᵣ) AS (
6 SELECT r.mc₁ , ..., r.mcᵣ
7 FROM r
8 WHERE NOT r.finished -- stop once terminating rule has been applied
9),

10 -- fetch details of the term stored in term_component from table terms
11 term(lit , var , lam , app) AS (
12 SELECT t.lit , t.var , t.lam , t.app
13 FROM machine AS ms , terms AS t
14 WHERE ms.term_component = t.id
15),
16 -- compute the next machine state
17 step(finished , mc₁ , ..., mcᵣ) AS (
18 -- rule 1 (terminates computation)
19 SELECT true , rule₁_expr₁ , ..., rule₁_exprᵣ
20 FROM machine
21 WHERE rule₁_cond

22 UNION ALL
23 .
24 .
25 .
26 UNION ALL
27 -- rule k
28 SELECT false , ruleₖ_expr₁ , ..., ruleₖ_exprᵣ
29 FROM machine
30 WHERE ruleₖ_cond
31)
32 SELECT *
33 FROM step
34)
35)
36 SELECT return_expr
37 FROM r
38 WHERE r.finished;

Listing A.1: Pattern for abstract machine implementation with external environment handling in
PostgreSQL.
Themachine state has r components mc₁, ,mcᵣ and k transition rules are specified, where
rule 1 terminates computation, rule i applies on ruleᵢ_cond and writes ruleᵢ_exprⱼ into
mcⱼ. term_component is the machine’s component which holds the term on which is pattern-
matched. Evaluation is started by injecting inj_expr₁, , inj_exprᵣ into the machine
and termination ensured by the WHERE clause in l.8, yielding return_expr. Each CTE machine,
term and step holds at most a single row only.
Within the CTE step, expressions need to affect external objects representing environments.

31

1 WITH RECURSIVE r(finished , ms , e) AS (
2 -- inject term into machine
3 SELECT false ,
4 row(inj_expr₁ , ..., inj_exprᵣ):: machine_state ,
5 null:: env_entry

6 UNION ALL (

7 WITH
8 r AS (TABLE r) -- non -linear recursion hack
9 machine(mc₁ , ..., mcᵣ) AS (

10 SELECT (r.ms).*
11 FROM r
12 WHERE r.ms IS NOT NULL AND NOT r.finished
13),
14 environments(id , name , val , parent) AS (
15 SELECT (r.e).*
16 FROM r
17 WHERE r.e IS NOT NULL AND NOT r.finished
18),
19 -- fetch details of the term stored in term_component from table

terms
20 term(lit , var , lam , app) AS (
21 SELECT t.lit , t.var , t.lam , t.app
22 FROM machine AS ms , terms AS t
23 WHERE ms.term_component = t.id
24),
25 -- compute the next machine state
26 step(finished , mc₁ , ..., mcᵣ , new_env_entry) AS (
27 -- rule 1 (terminates computation)
28 SELECT true , rule₁_expr₁ , ..., rule₁_exprᵣ , null
29 FROM machine
30 WHERE rule₁_cond

31 UNION ALL
32 .
33 .
34 .
35 UNION ALL
36 -- rule k (extends environment)
37 SELECT false , ruleₖ_expr₁ , ..., ruleₖ_exprᵣ ,
38 row(new_env_id , new_name , new_val , extended_env)
39 FROM machine
40 WHERE ruleₖ_cond
41),
42 -- update the environments according to the rule applied in step
43 new_envs(id , name , val , parent) AS (
44 -- copy old environments
45 SELECT e.*
46 FROM step AS s, environments AS e

32 Appendices

47 UNION ALL
48 -- extend environment if specified by s.new_env_entry
49 SELECT (s.new_env_entry).*
50 FROM step AS s
51 WHERE s.new_env_entry IS NOT NULL
52)
53 SELECT s.finished ,
54 row(s.mc₁ , ..., s.mcᵣ):: machine_state ,
55 null:: env_entry
56 FROM step AS s

57 UNION ALL

58 SELECT s.finished ,
59 null:: machine_state ,
60 ne:: env_entry
61 FROM step AS s, new_envs AS ne
62)
63)
64 SELECT return_expr
65 FROM r
66 WHERE r.finished AND r.ms IS NOT NULL;

Listing A.2: Pattern for abstract machine implementation with CTE-internal environment handling in
PostgreSQL.
Notation conventions are the same as in Listing A.1. Rule k is an environment-modifying
rule, whereas rule 1 is not.

Listings 33

B. Tables

terms
id i lam app
1 1 □ □ 1
2 □ 1 □ 𝜆 1
3 □ 2 □ 𝜆(𝜆 1)
4 1 □ □ 1
5 □ 4 □ 𝜆 1
6 □ 5 □ 𝜆(𝜆 1)
7 □ □ (3,6) (𝜆(𝜆 1)) (𝜆(𝜆 1))
8 0 □ □ 0
9 □ 8 □ 𝜆 0
10 □ □ (7,9) ((𝜆(𝜆 1)) (𝜆(𝜆 1))) (𝜆 0)

Table B.1.: Tabular, index-based representation of ((𝜆(𝜆 1)) (𝜆(𝜆 1))) (𝜆 0). On the right, each (sub-)term
is shown in its written-out form. The root term is highlighted.

r
ms efinished t s e id c parent

f 10 [] 1 □
f 7 [(9,1)] 1 □ (2)
f 3 [(6,1),(9,1)] 1 □ (2)
f 2 [(9,1)] 2 □ (3)
f □ 2 (6,1) 1
f 1 [] 3 □ (3)
f □ 2 (6,1) 1
f □ 3 (9,1) 2
f 6 [] 1 □ (4)/(5)
f □ 2 (6,1) 1
f □ 3 (9,1) 2
t 6 [] 1 □ (1)
t □ 2 (6,1) 1
t □ 3 (9,1) 2

Table B.2.: Evaluation of ((𝜆(𝜆 1)) (𝜆(𝜆 1))) (𝜆 0) ⇝ (𝜆(𝜆 1), ∅) with the Vanilla PostgreSQL Krivine
machine: all rows emitted by recursive CTE r.
For each machine_state row, the rule which has been applied is shown on the right. The
empty environment ∅ is represented by id 1. Table B.1 shows the corresponding terms
table and Listing 3.5 the relevant type definitions.

terms
id lit var lam app
1 □ x □ □ 𝑥
2 □ y □ □ 𝑦
3 □ □ □ (1,2) (𝑥 𝑦)
4 □ □ (y,3) □ (𝜆𝑦.(𝑥 𝑦))
5 □ □ (x,4) □ (𝜆𝑥.(𝜆𝑦.(𝑥 𝑦)))
6 □ x □ □ 𝑥
7 □ □ (x,6) □ (𝜆𝑥.𝑥)
8 □ □ □ (5,7) (𝜆𝑥.(𝜆𝑦.(𝑥 𝑦))) (𝜆𝑥.𝑥)
9 42 □ □ □ 42
10 □ □ □ (8,9) (((𝜆𝑥.(𝜆𝑦.(𝑥 𝑦))) (𝜆𝑥.𝑥)) 42)

Table B.3.: Tabular, variable-based representation of (((𝜆𝑥.(𝜆𝑦.(𝑥 𝑦))) (𝜆𝑥.𝑥)) 42). Notation conventions
are the same as in Table B.1.

34 Appendices

r
ms efinished s e c d id name val parent

f [] 1 [10] [] □
f [] 1 [9,8,apply] [] □ (6)
f [42] 1 [8,apply] [] □ (3)
f [42] 1 [7,5,apply,apply] [] □ (6)
f [(x,6,1),42] 1 [5,apply,apply] [] □ (5)
f [(x,4,1),(x,6,1),42)] 1 [apply,apply] [] □ (5)
f [] 2 [4] [([42],1,[apply])] □ (7)
f □ 2 x (x,6,1) 1
f [(y,3,2)] 2 [] [([42],1,[apply])] □ (5)
f □ 2 x (x,6,1) 1
f [(y,3,2),42] 1 [apply] [] □ (2)
f □ 2 x (x,6,1) 1
f [] 3 [3] [([],1,[])] □ (7)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f [] 3 [2,1,apply] [([],1,[])] □ (6)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f [42] 3 [1,apply] [([],1,[])] □ (3)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f [(x,6,1),42] 3 [apply] [([],1,[])] □ (5)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f [] 4 [6] [([],3,[]),([],1,[])] □ (7)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f □ 4 x 42 1
f [42] 4 [] [([],3,[]),([],1,[])] □ (3)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f □ 4 x 42 1
f [42] 3 [] [([],1,[])] □ (2)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f □ 4 x 42 1
f [42] 1 [] [] □ (2)
f □ 2 x (x,6,1) 1
f □ 3 y 42 2
f □ 4 x 42 1
t [42] 1 [] [] □ (1)
t □ 2 x (x,6,1) 1
t □ 3 y 42 2
t □ 4 x 42 1

Table B.4.: Evaluation of (((𝜆𝑥.(𝜆𝑦.(𝑥 𝑦))) (𝜆𝑥.𝑥)) 42) ⇝ 42 with the Vanilla PostgreSQL SECD machine:
all rows emitted by recursive CTE r.
Notation conventions are the same as in Table B.2. Table B.3 shows the corresponding terms
table. Additionally, any value of a sum type T = T₁ | T₂, which in our implementation is
represented as (a,□) or (□,b), is simply denoted by a or b for the sake of readability. This
notation is unambiguous, as can be verified with the help of the type definitions shown in
Listing 3.3.

Tables 35

	Abstract
	Acronyms
	Introduction
	Relational Database Management Systems
	PostgreSQL
	DuckDB
	Umbra

	Abstract machines
	Overview on Lambda calculus
	The SECD machine
	The Krivine machine
	Other machines

	Implementation
	Vanilla PostgreSQL
	Input format and data types
	SECD machine
	Krivine machine

	PostgreSQL with hash table extension
	Hash table extension
	SECD and Krivine machine

	Other DBMS
	DuckDB
	Umbra

	Evaluation
	Setup
	Term generation
	Test sets

	Results and discussion

	Conclusion
	Future work

	Bibliography
	Appendices
	Listings
	Tables

