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Abstract

This thesis explores the challenges of addressing the N+1 problem in GraphQL Ap-
plication Programming Interface (API) implementations using a generic mapping ap-
proach. GraphQL is a dynamic query language that allows API callers to issue queries
on a graph. A common approach to query resolution is to use resolvers to individ-
ually resolve each requested field, which corresponds to an edge within the graph.
Because the resolvers fetch data for each field from a data source, typically a Struc-
tured Query Language (SQL) database, this may lead to performance issues when
resolving one-to-many relationships. The N+1 problem occurs when a single resolver
is called multiple times, resulting in unnecessary SQL queries. Although the GraphQL
DataLoader utility [1] can assist in alleviating this problem, it still creates multiple
SQL queries. This thesis aims to address the N+1 problem by developing a mapping
approach that maps any given GraphQL query to exactly one SQL query, thus reduc-
ing the number of SQL queries and improving performance.

This study evaluates existing solutions, which provide a generic mapping of
GraphQL queries to SQL queries and explores their limitations with respect to inde-
pendent schema modeling. The proposed approach aims to overcome these limita-
tions and provide amore efficient and flexible solution for GraphQL API development,
further reducing boilerplate code and maintenance effort.

This thesis introduces a generic GraphQL-to-SQL mapping approach that ad-
dresses the N+1 problem. The approach yields a single SQL query for GraphQL queries
containing one root field. GraphQL queries with multiple root fields result in one SQL
query per root field. Furthermore, an implementation for the approach is included,
which highlights the benefits of using jOOQ Object Oriented Querying (JOOQ) [2].
The implementation enables the use of a mapping with minimal configuration and
results in a significant performance improvement over the use of resolvers.
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1
Introduction

The purpose of this first chapter is to provide an overview of the objective and content of this
thesis. Therefore, the motivation, the problem statement, and the objectives are presented.
Finally, an overview of the structure of the thesis is outlined.

1.1 Motivation

Web Application Programming Interfaces (APIs) are a central part of modern software develop-
ment, enabling data exchange between servers and client applications [3]. GraphQL serves as
a modern approach to building APIs that introduces a different set of principles compared to
traditional Representational State Transfer (REST) APIs [4]. While REST follows a fixed endpoint
structure, GraphQL allows clients to dynamically explore a graph that represents the data. This
dynamic nature of GraphQL presents challenges for software developers, including the N+1 prob-
lem. Furthermore, using the typical solution of resolving edges individually leads to similar or
redundant code and consequently to substantial manual effort in maintaining a GraphQL API.
These challenges underscore the need for an efficient solution. This thesis aims to provide a
solution by offering a generic mapping of GraphQL queries to Structured Query Language (SQL)
queries, effectively addressing both issues.

1.2 Problem statement

The N+1 problem is a well-known database query issue, which can have a negative impact on
performance [5]. It occurs when N relations in a table are requested along with associated
relations in another table. To illustrate this, consider the example of films and actors. Each film
is associated with a group of actors who star in it. If N films are requested, along with their
corresponding actors, the N+1 problem and its related performance issues may be encountered.
The server would initially request N films in one query and then execute one query for the actors
of each film, resulting in a total of N+1 queries.
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The N+1 problem is also frequently encountered in GraphQL server implementations [6]. List-
ing 1.1 illustrates how a problematic query results in multiple SQL queries. As shown in the
example, the related objects in the inner table are loaded separately for each of the N objects,
instead of all together [5]. This occurs because a GraphQL server typically resolves queries em-
ploying resolvers. Thus, for each field, a resolver specifies how that field can be queried from
the database.

1 query {
2 allFilms {
3 title # 1x SELECT * FROM film;
4 actors {
5 last_name # Nx SELECT * FROM actor JOIN film_actor ON ... ;
6 }
7 }
8 }

Listing 1.1: GraphQL query that requests all films with their actors. The comments represent the SQL
queries that could result from this request.

A prevalent method of addressing this issue is to use the DataLoader pattern (see Section 2.3.1),
which is a way to batch requests to the database [6]. This approach should ideally result in one
request per object type (i.e., table) requested in the query. Although one query per table already
scales better than the N+1 queries resulting from the naive approach, the data could theoretically
be requested in only one single query. A single request reduces both network and database
overhead. This is particularly significant in distributed systems with higher latency. There is also
more potential for optimization by the database engine when using a single complex query.

Another issue that results from using resolvers is that their implementation leads to boiler-
plate code. Despite the fact that the data fetching logic may be identical for each field, it must
be written out separately for each field’s resolver. This redundancy can lead to difficulties in
maintaining and scaling codebases for complex GraphQL schemas that have many connections
and types.

1.3 Objectives

The main objective of this thesis is to propose a solution to the N+1 problem that constructs
exactly one SQL query for any given GraphQL query. The proposed solution should operate in a
manner that imposes minimal restrictions on both the GraphQL and SQL schemas.

The solution should not use a resolver approach and therefore minimize the redundancy and
amount of code that has to be written when the schema is expanded.

A working prototype of the solution should be implemented and made available at
https://github.com/lukassailer/byos.

2 Chapter 1 Introduction
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1.4 Thesis structure

Chapter 1 Introduction

At the beginning of the thesis, the motivation, the problem statement and the objectives are
described. Additionally, a brief summary of the chapters is provided.

Chapter 2 Background and Related Work

Chapter 2 is dedicated to the context of the thesis. A short overview of the GraphQL language is
provided, as well as an introduction to the GraphQL Abstract Syntax Tree (AST). Different existing
approaches for mapping GraphQL to SQL are considered. Furthermore, the drawbacks they bring
with them are evaluated.

Chapter 3 Methodology

Chapter 3 explains the approach used for this thesis. First, the transpilation of a GraphQL AST
into a SQL query is described. Subsequently, the challenges as well as the restrictions regarding
this approach are examined. Lastly, the use cases for SQL views are listed with respect to this
approach.

Chapter 4 Implementation

The fourth chapter explains how the logic outlined in Chapter 3 was implemented and used
in a prototype. It details the technologies that were selected and how they were utilized in the
construction and consumption of the internal query representation. It also provides an overview
and explanation of the components of the prototype project.

Chapter 5 Discussion

In Chapter 5 the implementation from Chapter 4 is compared to the naive approach. Following
that, limitations and constraints, as well as potential areas for improvement and future work,
are discussed.

Chapter 6 Conclusion

The last chapter of the thesis summarizes the contents of all chapters. Finally, it is evaluated if
the goals of the thesis were achieved.

1.3 Objectives 3





2
Background and Related Work

This chapter provides an overview of the key concepts of GraphQL, explores the GraphQL AST and
examines existing approaches for mapping GraphQL to SQL. The proposed solution, explained
in the following chapter, is based on this.

2.1 Overview of GraphQL

GraphQL is an API query language originally developed by Meta Platforms Inc. (then Facebook
Inc.) in 2012 [7]. It was open-sourced in 2015 and moved to the GraphQL Foundation in 2018 [8].

GraphQL is agnostic to programming languages and storage systems [9]. A GraphQL API is
defined by a GraphQL schema, consisting of types and their respective fields. Each field is
resolved by its own function. Such a resolver-function handles data fetching for its field. A
client calling the GraphQL API can dynamically construct a query based on the schema that
fetches exactly the data they require and nothing more.

The subsections of this section discuss specific aspects of the GraphQL language that are
relevant throughout this paper. They are not and do not aim to be a complete introduction to
GraphQL. In fact, they are strongly based on the GraphQL documentation, which offers in-depth
explanations of all concepts in detail [10, 11].

2.1.1 Queries

As shown by the GraphQL query, shown in Listing 1.1, GraphQL allows the client to request exactly
the information they need. In this example, the client uses the allFilms query, which returns
a list of films (as specified on the Query type in the schema, see Section 2.1.2). The query is
defined to include the titles of all films as well as the last names of all actors who starred in
each film. The response is a JavaScript Object Notation (JSON) object called data that contains
the requested data in the same structure as it appears in the query. A possible response to this
exemplary query can be seen in Listing 2.1. In this case data would contain an array allFilms
that in turn contains objects each with a field title and a field actors. The value of actors is an
array in which each object only has the field last_name.
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1 {
2 "data": {
3 "allFilms ": [
4 {
5 "title ": "ACADEMY DINOSAUR",
6 "actors ": [
7 {
8 "last_name ": "GUINESS"
9 },

10 {
11 "last_name ": "GABLE"
12 },
13
14 ]
15 },
16 {
17 "title ": "ACE GOLDFINGER",
18 "actors ": [
19 {
20 "last_name ": "FAWCETT"
21 },
22 {
23 "last_name ": "ZELLWEGER"
24 },
25
26 ]
27 },
28
29 ]
30 }
31 }

Listing 2.1: Example of a JSON response to the query in Listing 1.1.

6 Chapter 2 Background and Related Work



As seen in the example in Listing 2.2, GraphQL queries can also specify arguments. In this
example, a film_id is provided, and only one film object is returned instead of an array. If there
is no film with the provided id filmById is null. Arguments do not have to be passed to the
query field, but are possible on every field that the schema defines arguments for.

1 query {
2 filmById(film_id: 1) {
3 title
4 release_year
5 }
6 }

Listing 2.2: GraphQL query that requests the title and release year for the film with id 1.

Queries can also use aliases for fields. These change the names of fields in the result. This is
mainly useful when the same field is requested multiple times with different arguments, since
it is not possible for multiple instances of the same field with different arguments to have
the same name. Listing 2.3 shows an example in which films released in 1999 and 2000 are
requested. The resulting data object contains one array films1999 and one array films2000 with
the respective objects.

1 query {
2 films1999: filmsByYear(release_year: 1999) {
3 title
4 }
5 films2000: filmsByYear(release_year: 2000) {
6 title
7 }
8 }

Listing 2.3: Query containing the same field twice with different aliases. For each one a different
argument value is used.

Although GraphQL also supports mutations for data manipulation and subscriptions for real-
time updates, these are not the focus of this paper and are therefore not discussed in detail.

2.1.2 Schemas and types

The GraphQL schema describes a set of types and their fields, which explains what data can be
requested and how it can be obtained. This schema can be used to validate and execute queries.
A GraphQL schema can be defined in the Schema Definition Language (SDL), which serves as a
human-readable way to declare types and their relationships.

2.1 Overview of GraphQL 7



A simple example of a GraphQL schema defined in SDL can be seen in Listing 2.4. The schema
defines the fields of the Query type that were used in previous examples. Additionally, two object
types and their fields are defined. One for films and one for actors. The fields of the Query type
determine what can be requested at the top level. The field allFilms is an example. Its type
is a list of Film objects. This permits requesting any field on the Film type on that field, some
of these have scalar types, like String, and some have other object types, allowing for further
nesting.

1 type Query {
2 allFilms: [Film!]!
3 filmById(film_id: ID!): Film
4 filmsByYear(release_year: Int): [Film!]!
5 }
6
7 type Film {
8 title: String!
9 release_year: Int

10 actors: [Actor!]!
11 }
12
13 type Actor {
14 first_name: String!
15 last_name: String!
16 }

Listing 2.4: Examplary GraphQL schema defining the Query type and two object types, one for films and
another for actors.

In GraphQL, a type (like String) is nullable by default. Only if it is followed by an exclamation
mark, it becomes non-nullable (String!). The same is true for lists. GraphQL can differentiate
between nullable lists and non-nullable lists, as well as lists of non-nullable and nullable ob-
jects. Table 2.1 gives an overview of the permutations of the nullability of lists and their contents.
Since this thesis focuses on GraphQL APIs with an SQL database as the data source, nullable
lists and lists of nullable objects are not considered in greater detail. However, it should be
mentioned that they can be useful for other data sources due to the bubble-up behavior of
GraphQL [9].

Type declaration Definition

[Actor] A nullable list of nullable objects

[Actor!] A nullable list of non-nullable objects

[Actor]! A non-nullable list of nullable objects

[Actor!]! A non-nullable list of non-nullable objects

Table 2.1: Different options for list nullability as described by Porcello and Banks [12].
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It should also be noted that nullability plays a role not only in GraphQL responses but also
in queries, since arguments can be nullable as well. The schema in Listing 2.4 defines the
release_year for filmsByYear to be nullable. This means that the argument is optional, but also
that null can be provided which would yield all films without a release_year (which is applicable
since the schema defines the field release_year of the Film type to be nullable).

2.2 The GraphQL AST

An AST is a hierarchical structure used by compilers to represent code in a way that can be
processed algorithmically [13]. In GraphQL, the AST serves as an intermediate stage during query
processing, encapsulating the structure of a GraphQL query. After obtaining the AST from the
GraphQL query, the query is first validated and then executed by traversing the AST.

The GraphQL AST, as explained by Porcello and Banks [14], has a GraphQL Document as the root
node. It can define one or more operations, one of which is selected. An OperationDefinition
has an operation field, indicating the type of operation (for this thesis, only the QUERY type is
important), and a SelectionSet. The SelectionSet represents the fields that have been requested
on this type and, therefore, consists of field nodes. Some of these field nodes may themselves
have a nested SelectionSet. Listing 2.5 shows the GraphQL AST resulting from the query in
Listing 1.1. This AST can be used to validate the query against the schema in Listing 2.4.

2.3 Existing approaches for mapping GraphQL to SQL

GraphQL is not dependent on any particular data source. Data can be stored in various formats
or distributed across multiple sources. In a common scenario, the data is stored within a SQL
database, requiring the derivation of essential SQL queries from GraphQL queries. This sec-
tion introduces both the conventional method of mapping GraphQL to SQL and various generic
approaches.

2.3.1 Resolvers and DataLoaders

GraphQL allows the dynamic construction of queries. A GraphQL server needs to be able to
understand any query that adheres to the schema and return the expected result. The usual
way to resolve a GraphQL query is to use resolvers, as defined in the GraphQL specification [9].
A resolver is a function that determines how to fetch the value of a field requested. If the data
source is a SQL database, this means that the resolver fetches for its field via a SQL query.

2.2 The GraphQL AST 9



1 Document {
2 definitions = [
3 OperationDefinition {
4 name = 'null',
5 operation = QUERY ,
6 variableDefinitions = [],
7 directives = [],
8 selectionSet = SelectionSet{
9 selections = [

10 Field {
11 name = 'allFilms ',
12 alias = 'null',
13 arguments = [],
14 directives = [],
15 selectionSet = SelectionSet{
16 selections = [
17 Field {
18 name = 'title ',
19 alias = 'null',
20 arguments = [],
21 directives = [],
22 selectionSet = null
23 },
24 Field {
25 name = 'actors ',
26 alias = 'null',
27 arguments = [],
28 directives = [],
29 selectionSet = SelectionSet{
30 selections = [
31 Field {
32 name = 'last_name ',
33 alias = 'null',
34 arguments = [],
35 directives = [],
36 selectionSet = null
37 }
38 ]
39 }
40 }
41 ]
42 }
43 }
44 ]
45 }
46 }
47 ]
48 }

Listing 2.5: GraphQL AST derived from the query in Listing 1.1.
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Resolving every field with its own SELECT statement, while being a clear and modular solution,
results in the aforementioned N+1 problem. To address the N+1 problem in GraphQL APIs, Dat-
aLoader instances (or DataLoaders) are commonly used. An implementation of the DataLoader
utility for Node.js is provided in the official GraphQL DataLoader repository [1]. Additionally,
ports of this utility are available for other languages, such as java-dataloader [15] for Java. Dat-
aLoaders play a crucial role in optimizing data fetching by enabling the batching and caching of
requests.

When using the DataLoader utility, resolvers use DataLoaders to bundle and process multi-
ple database requests together within the same GraphQL query, instead of performing separate
database queries. When multiple entities of the same type are requested, DataLoaders group
these requests into a single SQL query per requested type. This approach results in the execu-
tion of only one SQL query for each requested type, which corresponds to a table in the example
of films and actors. The use of batching in this approach can significantly reduce the number
of individual SQL queries that are executed.

In addition to batching, the DataLoader utility provides caching capabilities. Once data is
retrieved, it is stored in the cache for the context of the current query. When the same data is
requested again, it can be efficiently served from the cache, eliminating the need for redundant
database calls and improving query response times.

2.3.2 Generic approaches

The existing tools for translating GraphQL queries to SQL can be divided into two groups [16],
servers with and libraries for GraphQL to SQL mapping.

2.3.2.1 GraphQL servers with generic GraphQL to SQL mapping

The first group consists of tools designed to generate a complete GraphQL API based on an
existing SQL schema and some configuration. Examples for this group are Hasura [17] and Post-
Graphile [18]. These powerful engines act as a middle layer between the client and the database,
not only generating the GraphQL schema, but also handling GraphQL queries, mutations, and
subscriptions. Their aim is to speed up development by eliminating the effort of maintaining
a GraphQL backend. Hasura acts as a standalone GraphQL server. PostGraphile can act as a
GraphQL server or be used as a middleware to be integrated into an existing server.
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2.3.2.2 Libraries for generic GraphQL to SQL mapping

The second group consists of tools that generate a SQL query from a GraphQL query. An example
of one of those tools is Join Monster [19]. While the GraphQL servers with GraphQL to SQL
mapping mentioned above include a similar tool, these libraries are different in that they do
not act as a GraphQL server, but as a middle layer between an existing GraphQL server and
a database. This allows these tools to provide more flexibility, as developers can design the
GraphQL schema themselves (with some limitations or additional configuration).

Join Monster follows a code-only approach, which means that the schema, instead of being
defined in its own file in SDL, it is defined in the code. In case of Join Monster this means that the
schema is defined using graphql-js [20], a GraphQL implementation for JavaScript. This allows
the addition of fields specific to Join Monster to the types of the schema, which can, for example,
be strings for table names or functions that return a String for the SQL JOIN conditions given the
required context. An example of the graphql-js definition for the type that represents the film
table is provided in Listing 2.6. The example features the Join Monster specific fields required
to resolve fields of the type in GraphQL queries.

2.4 Limitations of related work

While DataLoaders do solve the N+1 problem, they still lead to multiple queries and, because
they work with resolvers, redundant code and maintenance effort. Additionally, DataLoaders
are a more general solution and are not specifically tailored for SQL, thus not utilizing the full
power of the Relational Database Management Systems (RDBMS).

GraphQL servers with GraphQL to SQL mapping, such as Hasura, generate the whole GraphQL
schema, thus removing the ability to customize it almost entirely. These tools may reveal too
much of the database to API users. Furthermore, their opinionated nature may clash with legacy
projects that have specific demands, for example, in authentication/authorization.

Join Monster introduces information about the SQL schema directly into the GraphQL schema
definition (see Listing 2.6). This means that SQL code is embedded within the GraphQL schema,
making it dependent on the underlying SQL schema. However, this approach does not include
validation checks to ensure that the SQL code is valid or compatible with the SQL schema. As
a result, changes to the SQL schema could introduce errors in the GraphQL schema, which may
go unnoticed until runtime. Furthermore, Join Monster is limited to Node.js applications and
enforces a code-only approach, which may not align with projects that prioritize the schema-
first approach using SDL documents to define the schema.
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1 export const Film = new GraphQLObjectType ({
2 name: 'Film',
3 extensions: {
4 joinMonster: {
5 sqlTable: 'film',
6 uniqueKey: 'film_id ',
7 },
8 },
9 fields: () => ({

10 title: {
11 type: new GraphQLNonNull(GraphQLString),
12 extensions: {
13 joinMonster: {
14 sqlColumn: 'title ',
15 },
16 },
17 },
18 release_year: {
19 type: GraphQLInt ,
20 extensions: {
21 joinMonster: {
22 sqlColumn: 'release_year ',
23 },
24 },
25 },
26 actors: {
27 type:
28 new GraphQLNonNull(new GraphQLList(new GraphQLNonNull(Actor))),
29 extensions: {
30 joinMonster: {
31 junction: {
32 sqlTable: 'film_actor ',
33 sqlJoins: [
34 (filmTable , junctionTable , args) =>
35 `${filmTable}.film_id = ${junctionTable}.film_id `,
36 (junctionTable , actorTable , args) =>
37 `${junctionTable}.actor_id = ${actorTable}.actor_id `,
38 ]
39 },
40 },
41 },
42 },
43 }),
44 });

Listing 2.6: Example of an object type definition using Join Monster.
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3
Methodology

This chapter provides an overview of the approach taken to address the objectives outlined
in Section 1.3. After the basic concept is described, more specific issues and their proposed
solutions are presented. Finally, the scope and limitations of the approach are described.

3.1 Basic concept

The GraphQL AST, which is derived from a query to validate it against a schema and execute it, is,
as the name suggests, a tree. The tree structure of the GraphQL AST from Listing 2.5 is shown in
Figure 3.1. A SQL query with subqueries can also be thought of as a tree structure. In this section,
the process of transpiling the GraphQL AST into an equivalent SQL query are explored. In this
context, transpiling describes the process of translating a GraphQL AST into an equivalent SQL
query that retrieves the requested data from the underlying database.

To transpile a GraphQL AST into a nested SQL query in a comprehensible way, an internal tree
representation is used. The AST is translated into the internal tree representation, and this in
turn is translated into a SQL query. The AST depicted in Figure 3.1 reveals a pattern. All fields
are either inner nodes, such as allFilms and last_name, or leaf nodes. Regarding the GraphQL
schema, it can be seen that the inner nodes have object types, while the leaf nodes must have
scalar types. It can also be deduced that, with respect to the underlying SQL database, the
inner nodes correspond to tables, while the leaf nodes correspond to columns of the table. The
internal tree representation is derived from this information. Figure 3.2 illustrates the internal
tree obtained from the AST in Figure 3.1. Document and OperationDefinition are discarded and
the fields are categorized into relations and attributes according to the described pattern.
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Document

OperationDefinition

Field
allFilms

Field
title

Field
actors

Field
last_name

Figure 3.1: The GraphQL AST from Listing 2.5 represented as a tree.

Relation
allFilms

Attribute
title

Relation
actors

Attribute
last_name

Figure 3.2: The internal tree representation derived from Figure 3.1.
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As outlined in Section 1.3 the purpose of this thesis is to provide a solution to the N+1 problem
that translates any GraphQL query into exactly one SQL query. With the described approach,
each root field (meaning each field on the Query type that is requested in a query) leads to
one internal tree, and thus to one SQL query. This is the same as for the generic approaches
mentioned in Section 2.3.2. The OperationDefinition in the AST has one child node for each root
field. When the OperationDefinition is removed, each child becomes a Relation and root node
of a tree. Usually, but not necessarily, a GraphQL query includes only one root field. However,
a GraphQL query can consist of multiple fields of the query type (such as in Listing 2.3), thus
representing potentially very different requests. Since the relationship between these queries
is unpredictable and may not be related at all, it is not possible to connect the resulting SQL
queries in a generic way.

3.2 Challenges and proposed solutions

The GraphQL specification [9] defines how a GraphQL server should behave. It would be ideal to
meet this specification. Additionally, common use cases for GraphQL APIs should be supported.
This section looks at some features of the specification and common use cases in more detail.

3.2.1 Simple queries

Consider a query that requests all films and their titles (like Listing 1.1 without actors). This
would result in the internal tree in Figure 3.2 without the nodes for actor and last_name. It is
apparent that the SQL query obtained from this should be as in Listing 3.1.

1 SELECT film.title FROM film;
Listing 3.1: Simple SQL query requesting the titles of all films.

This internal tree uses the GraphQL field names as labels for the tree nodes. These must be
used to construct a result in the expected JSON format. However, these names are usually not
the names of the corresponding tables that are needed to construct the SQL query (like allFilms
in Figure 3.2). There must be a way to derive table names from the corresponding GraphQL
fields, either by a constraint on the GraphQL fields or by configuration. This approach employs
the design pattern ”Convention over Configuration”, which aims to derive default settings from
code instead of additional configuration [21]. Constraining the field names to match the names
of SQL tables would be a significant restriction to the GraphQL schema, removing the ability of
differently named fields in the GraphQL schema to refer to the same table (like allFilms and
filmById). Since this restriction is not feasible, how can the name of the database table be
derived? When constructing the internal tree, the GraphQL schema is introspected and the type
of the requested Relation is retrieved. It is assumed that this type has the same name as its
corresponding table.
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In this example, this would be film, derived from the type Film, since it is assumed that
table names are lowercase. For attributes, the name of the GraphQL field can be used. It is
assumed that the field name matches the column name. Just like table names, column names
are lowercase. In both cases, aliases can be handled because the GraphQL AST includes both
the name and the alias (if there is one) for each requested field.

It would be possible to extend this behavior with some configuration like a lookup table linking
type or field names to table or column names if having both match is not desired.

Since the end result should be a JSON structure, in the case of allFilms a JSON array, the JSON
capability of the RDBMS can be utilized to directly accumulate the data in this form. The SQL
query would then look as in Listing 3.2. Note that JSON methods may vary depending on the
RDBMS used. COALESCE is used in combination with JSON_ARRAY to ensure that an empty JSON
array is returned instead of null if there are no rows in the table.

1 SELECT
2 COALESCE(
3 JSON_ARRAYAGG(
4 JSON_OBJECT(
5 KEY 'title ' VALUE film.title
6 )
7 ),
8 JSON_ARRAY ()
9 )

10 FROM film;
Listing 3.2: The SQL query from Listing 3.1 but responding directly in JSON format.

3.2.2 Queries with increased depth

The GraphQL schema, as well as the SQL schema, should be minimally affected by the solu-
tion. Ideally, this would mean that any existing application that uses a GraphQL API and a SQL
database could, with some configuration, use our mapping. Without any configuration, it is not
possible for the mapping to work. This is because the relationships between tables in SQL
cannot be derived from the GraphQL AST or the GraphQL schema.

Consider the internal tree in Figure 3.2. Deriving the SQL query from this tree introduces an
additional challenge. The provided information does not make it evident how the tables film
and actor are interconnected. To specify this, configuration is required. This configuration holds
information on how to join tables for all relationships between tables that should be exposed.
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Again, the JSON functionality of the RDBMS can be used to construct JSON arrays and objects
reflecting the structure of the internal tree. For the tree in Figure 3.2, this is illustrated in List-
ing 3.3. Using this nested structure of SELECT statements can not only be recursively obtained
from the internal tree but also prevents unintended Cartesian products when requesting deeper
trees.

1 SELECT
2 COALESCE(
3 JSON_ARRAYAGG(
4 JSON_OBJECT(
5 KEY 'title ' VALUE film.title ,
6 KEY 'actors ' VALUE (
7 SELECT
8 COALESCE(
9 JSON_ARRAYAGG(

10 JSON_OBJECT(
11 KEY 'last_name ' VALUE actor.last_name
12 )
13 ),
14 JSON_ARRAY ()
15 )
16 FROM actor , film_actor
17 WHERE actor.actor_id = film_actor.actor_id
18 AND film_actor.film_id = film.film_id
19 )
20 )
21 ),
22 JSON_ARRAY ()
23 )
24 FROM film;

Listing 3.3: SQL query using JSON functions to resolve internal tree in Figure 3.2.

3.2.3 Object and list types

GraphQL fields are defined within the GraphQL schema as either having an object or list type.
Therefore, when a field is requested, the result is either a JSON object or a JSON array. If the
field is nullable, the result may also be null. To determine whether an object or an array should
be returned, the type information must be obtained by introspecting the GraphQL schema.

GraphQL fields, as mentioned in Section 2.1.2 can be nullable. For object types, this indicates
that the value can be either an object or null. A null value would mean that the corresponding
row in SQL was not found.
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Lists, as well as objects in a list, can also be nullable (see Table 2.1). Nullable lists and lists
of nullable objects cannot be represented in a relational database. Since a relational database
is used as a data source, only non-nullable lists of non-nullable objects are considered for the
proposed approach.

3.2.4 Filter arguments

For every field in a GraphQL schema, arguments can be defined. A common use case for argu-
ments, which the proposed solution should support, is filtering. This could be used to retrieve
one specific object like filmById. In this case, null is returned if no filmwith the provided film_id
exists. However, it could also be used to filter multiple results as with filmsByYear. Given an
integer, this would return zero or more films as an array. Nullable arguments, as mentioned in
Section 2.1.2, should also be supported.

3.2.5 Pagination

Web applications often allow users to scroll through pages of content. This means that the client
fetches one page after the other from the server. Cursor-based pagination makes this possible
by providing both the option of retrieving only a limited number of results and the option of
specifying a cursor after which this number is counted [22]. Therefore, the proposed solution
should support cursor-based pagination as specified in the GraphQL Cursor Connections Spec-
ification [23].

Pagination is expressed in in GraphQL as a modification to the GraphQL schema. It is therefore
an alternative to using list types directly. Fields that return multiple results can use list types,
like allFilms or actors in Listing 2.4. A list indicates that the field returns multiple items of the
wrapped type (Film or Actor in this case). However, it is generally recommended to paginate
fields that return multiple types. Pagination is not mandatory in this solution. Both options can
be utilized, as it can be advantageous to forgo pagination for specific fields, particularly if the
results for that field are consistently small.

The GraphQL Cursor Connections Specification [23] establishes a uniform protocol for pagina-
tion within GraphQL. On the one hand, the specification specifies information about the connec-
tion, the page, and cursors that is accessible through the API. On the other hand, it defines the
arguments first and after. The argument first accepts an integer specifying how many ob-
jects of the connection should be returned, while after accepts a cursor specifying after which
object the first n elements should be selected.

A cursor is an opaque string that identifies each result entry, or edge. It can be used as an
argument for the after argument in a field that implements cursor-based pagination to retrieve
edges occurring after its own edge. By using the cursor value returned by the endCursor field,
clients can obtain the next page and continue paging through content.
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Listing 3.4 shows how the updated version of allFilms can be used to return the next ten
nodes after a cursor and how additional information can be requested.

1 query {
2 allFilms(first: 10, after: "bXlDdXJzb3I=") {
3 edges {
4 node {
5 title
6 }
7 cursor
8 }
9 totalCount

10 pageInfo {
11 hasNextPage
12 endCursor
13 }
14 }
15 }

Listing 3.4: GraphQL query featuring pagination.

For the GraphQL schema cursor-based pagination means that a field which returns multiple
results, instead of having a list type, has a non-nullable object type, the connection type. This
connection type has a field edges whose type is a list of the edge type. Additionally, the con-
nection type includes the field totalCount, which indicates how many edges there are on the
connection in total, as well as the field pageInfo, which provides the information if there is a
next page and what the last cursor of the page is. Lastly, the edge type has a field node that has
the original object type, as well as a field cursor. A cursor can be used for the after argument
to fetch a page starting after that cursor. An example of the types mentioned with regard to the
allFilms query can be seen in Listing 3.5 It should be noted that the original object type, in this
case Film, remains unchanged when using cursor-based pagination.

Similarly to the forward pagination arguments first and after, the GraphQL Cursor Connec-
tions Specification [23] defines the backward pagination arguments last and before. These
arguments enable data to be paginated in reverse. For the purpose of this thesis, the focus will
be on forward pagination.

3.2.6 Sorting

Especially in combination with pagination, it can be useful to dictate the order of the requested
elements. This can also be enabled by providing support for arguments that reflect the ORDER BY
functionality of SQL. It should be possible to define what fields ordering should be allowed. It
should also be possible to order by multiple fields, and order ascending as well as descending,
since SQL offers this functionality.
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1 type Query {
2 # with cursor -based pagination:
3 allFilms(first: Int , after: String): FilmConnection!
4 # without:
5 # allFilms: [Film !]!
6 }
7
8 type FilmConnection {
9 edges: [FilmEdge!]!

10 totalCount: Int!
11 pageInfo: PageInfo!
12 }
13
14 type FilmEdge {
15 node: Film!
16 cursor: String!
17 }
18
19 type PageInfo {
20 hasNextPage: Boolean!
21 endCursor: String
22 }

Listing 3.5: Part of a GraphQL schema that defines allFilms using cursor-based pagination.

3.3 Scope and limitations

The approach, as outlined in this chapter, comes with some limitations. Some of these restric-
tions are a result of the effort to bridge the gap between dynamic GraphQL and structured SQL.
Other restrictions inherent to the scope of the thesis.

3.3.1 Arguments

GraphQL arguments offer extensive flexibility, since their functionality depends on how they
are implemented within the resolver function. Since a generic mapping cannot accommodate
arbitrary functionalities, this solution focuses on common use cases for GraphQL arguments,
as outlined by Porcello and Banks [12]. The prioritized functionalities are filtering and sorting
based on fields of a table, as well as pagination. These selected functionalities serve as essential
building blocks for GraphQL queries and exemplify how arguments can be supported, laying the
groundwork for the inclusion of additional functionalities in the future.
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3.3.2 Mutations and subscriptions

While GraphQL offers mutations for data manipulation and subscriptions for real-time updates,
this solution focuses on generating one SQL query per GraphQL query. As a result, mutations
and subscriptions are not supported. Although it is theoretically possible to extend the solution
to include generic mappings for mutations and subscriptions, doing so would go beyond the
scope of this thesis. Developers, in scenarios involving mutations, have the option of exploring
alternative methods, like Command Query Responsibility Segregation (CQRS), as detailed by
Martin Fowler [24]. CQRS describes the approach of decoupling read and write operations to
improve performance and modularity.

3.3.3 Lists of lists and scalar values

GraphQL supports nested lists, for example [[Actor]]. If these lists describe relationships be-
tween types, such nested structures would be represented in relational databases as tables with
relationships. Therefore, when using a SQL database as the data source, it is more appropriate
to represent these nested structures in GraphQL as nested types that mirror the tables in the
data source, rather than as nested lists. Since representing relationships as nested lists can be
avoided and doing so leads to a more comprehensible GraphQL schema, they are not supported.

Similarly, GraphQL enables the definition of lists of scalar values, such as [String!]!. How-
ever, due to the lack of support for array types in some RDBMSs, it can be difficult to represent
these types of lists in relational databases. While certain RDBMSs do offer support for arrays,
effectively modeling lists of scalar values often involves alternative strategies, such as normal-
izing the data into a separate table and establishing a foreign-key relationship to the parent
table. Due to the variability in SQL database support, because they can be represented in SQL
using tables (and thus object types in GraphQL), and to prioritize the core implementation, this
version does not support lists consisting of scalar values.

3.3.4 Not representable nullability

As explained in Section 3.2.3 nullable lists and lists of nullable types cannot occur and are
therefore not supported.

Additionally, the bubble-up behavior described in the GraphQL Spec [9], which describes prop-
agating null values up the GraphQL schema for non-nullable fields, are not supported. This is
because this feature is mainly useful for other data sources. If a non-nullable field returns null
in the generic GraphQL to SQL mapping, this means that the SQL and GraphQL schemas do not
match. Propagating the null value up would not be useful.
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3.4 Enhancing query flexibility with SQL views

Since the generic mapping approach maps GraphQL object types to SQL tables, it is not directly
possible to have queries that fetch data that are not present in a table in the same form. Exam-
ples of this would be fields that represent a value that is computed from database columns. In
other words, queries that involve some sort of business logic.

For this purpose, SQL views can be utilized. Since SQL views can be used for our approach
in the same way as tables, they can be used to provide columns with values that are computed
from columns of other tables. They can also be used to provide existing tables under a different
name or with different column names. Providing a table and its columns under other names
can be used to address the constraint of object type names matching table names and field
names matching column names.
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4
Implementation

This chapter explains how the approach described in Chapter 3 was implemented and utilized
with example data. Currently, the implementation comprises a single repository that functions
as a GraphQL server. This repository encapsulates both the logic described in Chapter 3 for
handling GraphQL queries, as well as example data and server functionality to facilitate testing
and demonstration purposes.

The complete implementation is available at https://github.com/lukassailer/byos. The
project name BYOS stands for Bring Your Own Schema and expresses that no schema is gener-
ated, but one’s own GraphQL and SQL schemas can be used. Version 0.1.0 is the current version
at the time of this publication.

An outline of the selected technologies is presented first, followed by an explanation of the
underlying database. Section 4.3 describes the structure of the repository, the details of which
are described in Sections 4.4 and 4.5.

4.1 Overview of the chosen technologies

In order to accomplish the objectives of this study, it was necessary to make a choice of tech-
nologies to utilize. This section provides a summary of the main technologies that form the
basis of the project.

4.1.1 jOOQ

The library jOOQObject Oriented Querying (JOOQ) [2] provides a Domain-Specific Language (DSL)
that allows SQL code to be written in Java. Using a DSL like JOOQ to build SQL queries offers
an abstraction of SQL statements thus enabling modular assembly of valid statements. Further-
more, JOOQ features a code generator that creates Java classes for the underlying SQL database.
This allows the correctness of SQL statements to be checked at compile time. These features
make JOOQ ideal for dynamically constructing SQL queries. Furthermore, JOOQ supports vari-
ous database systems, making it database-agnostic. This allows us to use functions such as
JSON_ARRAYAGG, which may not be supported in the underlying RDBMS, but can be simulated by
JOOQ in such cases.
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The JSON capabilities of JOOQ are, in fact, so extensive that Lukas Eder, the creator of JOOQ,
suggested that it could be used to implement a GraphQL to SQL translator [25], using a similar
nesting of JSON aggregates as shown in Listing 3.3.

4.1.2 Kotlin

Since JOOQ is used for this project, Java would be a natural choice of programming language.
However, Kotlin [26], with its full compatibility with the Java Virtual Machine (JVM), is an equally
viable option.

In addition to its seamless integration with Java code and libraries, Kotlin offers unique
features and advantages. One of the distinctive features of Kotlin is its support for func-
tional programming paradigms. Kotlin also has robust null safety features that help prevent
NullpointerExceptions.

For this project, Kotlin was chosen not just because of its technical merits but also as a per-
sonal preference of the author.

4.1.3 Jackson

Jackson [27] is a JSON library for Java (and thus the JVM platform). It provides tools for parsing and
generating JSON. For our implementation, Jackson’s ObjectMapper is used to parse the GraphQL
AST’s JSON structure.

4.1.4 GraphQL Java

GraphQL Java [28] is an implementation of the GraphQL specification. It includes tools for pars-
ing, validating, and executing schemas using the resolver approach. This implementation only
uses a small portion of these tools, since most of this is handled differently. However, the query
validation and the type system of GraphQL Java are utilized.

4.1.5 Spring Boot

The Spring Boot framework [29] is a simple tool used to create Java applications. In this project,
Spring Boot was used as the foundation for the GraphQL Server.

The project was initialized with Spring Initializr [30], a tool that generates a Spring Boot project.
The Spring Initializr was used to construct a Spring Boot GraphQL server.

The server also offers a GraphiQL frontend, a web-based graphical user interface that facil-
itates interaction with GraphQL APIs. GraphiQL enables users to query the available GraphQL
schema without using third-party tools or manual Hypertext Transfer Protocol (HTTP) requests.
However, alternative methods for accessing the GraphQL API are also possible.
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4.2 Database with sample data

PostgreSQL [31] was chosen as the RDBMS to store sample data for the application. However, an
alternative RDBMS could also have been used, since JOOQ supports the utilized JOOQ functions
in various RDBMS platforms.

For test data, the Sakila example database was used as specified by the JOOQ organization
[32]. This database represents a video rental store and consists of movies, actors, and other
related information, as used throughout this thesis. The schema and data for film categories
have been expanded to include parent categories to allow categories to have a parent category
as well as be the parent category for other categories. This change was made to add an example
where a table has a foreign-key relationship with itself.

4.3 Project Structure

The BYOS repository is divided into two packages: the byos package (core package) for logic
components that are independent of the application in which they are used, and the example
package for application-specific elements. The latter is an example of a GraphQL Server, that
makes use of the mapping logic of the core package. This section provides an overview of these
packages. Section 4.4 describes the components of the example package, while Section 4.5
details those of the core package. The contents of Sections 4.4 and 4.5 is presented in the same
order in which the code is executed.

4.3.1 Core package

The core package consists of the following Kotlin files:

• Counter

• JooqHelpers

• QueryTranspiler

• SchemaParsing

• WhereCondition

The heart of the core package and thus the query transpilation logic is the QueryTranspiler
class. The file containing the QueryTranspiler class also contains the definition for the internal
representation tree for queries (InternalQueryNode). The QueryTranspiler class itself contains
functions for generating internal query trees from operation definitions and resolving internal
query trees into JOOQ Fields.
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To create an instance of the QueryTranspiler class, an object of the WhereCondition class is
required. The WhereCondition class is also part of the core package. It includes functions to
obtain conditions for WHERE clauses from relationships and arguments.

Furthermore, the package includes the SchemaParsing file that provides the getFieldTypeInfo
function that inspects a GraphQL schema and obtains type information for a GraphQL field.

The JooqHelpers file consists of helper functions for executing and formatting JOOQ queries
as well as a pretty printer for debugging.

Lastly, the Counter class offers a simple counter, an instance of which is also used to instantiate
an QueryTranspiler object.

4.3.2 Example package

The example package includes these Kotlin files:

• ByosApplication

• Config

• GraphQLRequestFilter

• GraphQLService

The example package defines a spring boot server that offers a GraphQL API. The entry point
for this application is the mainmethod in the ByosApplication class. By running this method the
server can be started.

Incoming GraphQL Queries are intercepted in order to resolve them using the logic of the core
package. To intercept GraphQL Queries the class GraphQLRequestFilter overrides the function
doFilterInternal of the OncePerRequestFilter class, which is provided by the Spring framework.

Another class of the example package, namely GraphQLService, defines functions that extract
the relevant GraphQL operation definition from the HTTP request and execute it using an in-
stance of the QueryTranspiler class.

The GraphQLService provides a function to the WhereCondition instance that determines
how the relationships should be resolved. Since this is application-specific, this function,
getConditionForRelationship, is located in the Config file in the example package.
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4.4 Exemplary application

This section provides an overview of the exemplary GraphQL Server within the example package,
which demonstrates the usage of the GraphQL to SQL mapping. The implementation of the logic
for the mapping itself is described in Section 4.5.

4.4.1 Intercepting the request

The GraphQLRequestFilter serves as an entry point for processing GraphQL queries. It intercepts
any incoming HTTP request and, if it is a GraphQL query, calls the executeGraphQLQuery method
of the GraphQLService to execute it. The result of this method is then sent as a response to the
client.

4.4.2 Handling the request

The executeGraphQLQuery method of the GraphQLService uses the Validator of GraphQL Java to
validate the GraphQL Document against the GraphQL schema and return errors if they occur.
If no errors occur, the GraphQL OperationDefinition for the selected operation is extracted
from the AST. For this OperationDefinition the buildInternalQueryTrees method is invoked
on an instance of the QueryTranspiler class. To instantiate the QueryTranspiler class both
a GraphQL schema and a WhereCondition are provided. The latter is instantiated itself using
the getConditionForRelationship function defined in the Config file. Afterwards, every resulting
query tree is resolved and the respective query executed. Finally the JSON results are joined
into a data object and returned.

4.5 Query resolution logic

In contrast to the application-specific context discussed in the previous section, this section
explains the implementation of the GraphQL to SQL mapping, which is mostly independent of
the application’s specific use case.

4.5.1 Internal query tree

The internal tree representation described in Section 3.1 was implemented in Kotlin as the sealed
class InternalQueryNode. The implementation of the class is depicted in Listing 4.1. A sealed
class is an abstract class with a fixed set of subclasses. The subclasses of InternalQueryNode
are Relation and Attribute. This means that each node can be either a Relation, an inner node
with a list of children, or an Attribute, and thus a leaf node.
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Every InternalQueryNode has a graphQLFieldName and a graphQLAlias. The graphQLFieldName is
the name of the requested GraphQL field. For an Attribute, this matches a column name in the
database, whereas for a Relation, it identifies a predefined relationship between tables. The
graphQLAlias holds the alias for the GraphQL field, so that the field can be returned under that
alias. Objects of the Attribute class do not need any additional information.

Objects of the Relation class also have a sqlAlias, an alias to be used in the SQL query. This
unique alias is used to prevent conflicts if the same table occurs multiple times in the generated
SQL query.

A Relation also contains information about the GraphQL type inside the fieldTypeInfo field.
This field of type FieldTypeInfo consists of the graphQLTypeName, the Boolean value isList, and
the relationName. The graphQLTypeName holds the name of the GraphQL object type of the field.
If isList is true, it means that this object type is wrapped in a list, and therefore an JSON array
should be returned, otherwise an object is returned. The relationName is simply shorthand for
the lowercase value of the graphQLTypeName, which matches the name of the corresponding table.

In addition, a Relation stores the list arguments that were provided for its associated field.
An Argument is a key value pair, where the key is a String and the value implements the GraphQL
Java interface Value. Therefore, it represents a GraphQL argument consisting of a name and any
GraphQL value.

Lastly, if the GraphQL type for a Relation uses a connection type, it has a connectionInfo
(otherwise this is null). This field of type ConnectionInfo contains aliases for the fields edges,
node, cursor, and totalCount. Additionally, it contains a list of PageInfo objects, each of which
contains their alias and a list of aliases for the fields hasNextPage and endCursor. The aliases are
lists because the same field can be requested multiple times under different aliases.

4.5.2 Building the internal query tree

The class QueryTranspiler defines functions for building and resolving internal query trees. An
instance of the QueryTranspiler class must be initialized with an instance of the WhereCondition
class (which will be explained in Section 4.5.5) and a GraphQL schema. The instance of the
WhereCondition class is specific to the exemplary application.

The method buildInternalQueryTrees takes the OperationDefinition of a GraphQL AST and
returns a list of Relation objects or, in other words, a forest. Internally buildInternalQueryTrees
calls getChildrenFromSelectionSet on the SelectionSet of the OperationDefinition and casts the
list of InternalQueryNodes into a list of Relations. This cast is valid because a root node cannot
be an Attribute, since an Attribute has to exist on a table.
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1 sealed class InternalQueryNode(
2 val graphQLFieldName: String ,
3 val graphQLAlias: String
4 ) {
5 class Relation(
6 graphQLFieldName: String ,
7 graphQLAlias: String ,
8 val sqlAlias: String ,
9 val fieldTypeInfo: FieldTypeInfo ,

10 val children: List<InternalQueryNode>,
11 val arguments: List<Argument>,
12 val connectionInfo: ConnectionInfo? ,
13 ) : InternalQueryNode(graphQLFieldName , graphQLAlias)
14
15 class Attribute(graphQLFieldName: String , graphQLAlias: String)
16 : InternalQueryNode(graphQLFieldName , graphQLAlias)
17 }
18
19 data class FieldTypeInfo(
20 val graphQLTypeName: String ,
21 val isList: Boolean
22 ) {
23 val relationName = graphQLTypeName.lowercase ()
24 }
25
26 data class ConnectionInfo(
27 val edgesGraphQLAlias: String ,
28 val nodeGraphQLAlias: String ,
29 val cursorGraphQLAliases: List<String>,
30 val totalCountGraphQLAliases: List<String>,
31 val pageInfos: List<PageInfo>
32 )
33
34 data class PageInfo(
35 val graphQLAlias: String ,
36 val hasNextPageGraphQlAliases: List<String>,
37 val endCursorGraphQlAliases: List<String>,
38 )

Listing 4.1: Implementation of the internal query tree.
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The implementation of getChildrenFromSelectionSet can be seen in Listing 4.2. The initial
call of getChildrenFromSelectionSet on the SelectionSet of the OperationDefinition constructs
one Relation object for each root field in the GraphQL query. A field in the SelectionSet is
a selection. For each selection, since these are object types representing tables, there are
children. These children are located in a nested SelectionSet for which a recursive call of
getChildrenFromSelectionSet is issued. The return type of getChildrenFromSelectionSet is a
list of InternalQueryNodes, which means that its result can be a mixture of both Relation and
Attribute objects. When there are no more nested Relations, only Attributes are returned, and
the recursion stops. As long as nested Relations exist, the recursion continues until the forest
is complete.

As seen in Listing 4.2, the type of the InternalQueryNode constructed for a selection depends
on its SelectionSet, the subSelectionSet. If there is no subSelectionSet, an Attribute is created.
Otherwise, a Relation is created. For the graphQLFieldName the name of the selection is used, since
this holds the name of the requested field. Similarly, the alias of the selection is assigned to
the graphQLAlias. If no alias is provided in the GraphQL query, the graphQLAlias is the same as
the field name. The sqlAlias is derived from the graphQLFieldName and an increasing ID, making
it unique while still being human-readable.

As mentioned above, the children of a Relation are created by calling
getChildrenFromSelectionSet on the subSelectionSet. For Relations of a connection type,
the SelectionSet of the node type is used instead. The fieldTypeInfo is retrieved by the
getFieldTypeInfo function of the SchemaParsing module, since it requires introspection of the
GraphQL schema. For Relations of a connection type, this function is called again on the edge
and the node type, thus producing the information of the node type. Similarly, the SelectionSets
of these nested types are followed to obtain the aliases of the special fields used for fields
with a connection type. These aliases are lists, since the fields can be requested multiple times
under different aliases or not at all resulting in an empty list.

4.5.3 Introspecting the schema

The function getFieldTypeInfo is called to get the FieldTypeInfo for a field of the GraphQL
schema. To do this, a GraphQL schema, a field name, and a type name are provided. With
these, it is possible to lookup the type of the field on the provided type inside the GraphQL
schema. The result of this lookup is a GraphQLType. To turn this GraphQLType into a FieldTypeInfo
the name of the object type and the isList Boolean have to be derived from it. This is the
task of the getTypeInfo function. The GraphQLType can be a GraphQLObjectType, in which case its
type name can be accessed and isList would be false. But the GraphQLType could also be a
GraphQLNonNull or GraphQLList, both of which wrap an inner type. In these cases getTypeInfo
is called recursively. If, while descending the wrapped types, a GraphQLList is passed isList is
true.
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1 private fun getChildrenFromSelectionSet(
2 selectionSet: SelectionSet ,
3 counter: Counter ,
4 parentGraphQlTypeName: String = schema.queryType.name
5 ): List<InternalQueryNode> =
6 selectionSet.selections
7 .filterIsInstance<Field>()
8 .map { selection ->
9 val subSelectionSet = selection.selectionSet

10 when {
11 subSelectionSet == null -> {
12 InternalQueryNode.Attribute(
13 graphQLFieldName = selection.name ,
14 graphQLAlias = selection.alias ?: selection.name
15 )
16 }
17
18 subSelectionSet.selections.any {
19 it is Field && it.name == "edges"
20 } -> {
21 // construct InternalQueryNode.Relation with connectionInfo ...
22 }
23
24 else -> {
25 val fieldTypeInfo = getFieldTypeInfo(
26 schema ,
27 selection.name ,
28 parentGraphQlTypeName
29 )
30 InternalQueryNode.Relation(
31 graphQLFieldName = selection.name ,
32 graphQLAlias = selection.alias ?: selection.name ,
33 sqlAlias =
34 "${selection.name}-${counter.getIncrementingNumber ()}",
35 fieldTypeInfo = fieldTypeInfo ,
36 children = getChildrenFromSelectionSet(
37 subSelectionSet ,
38 fieldTypeInfo.graphQLTypeName
39 ),
40 arguments = selection.arguments ,
41 connectionInfo = null
42 )
43 }
44 }
45 }

Listing 4.2: Shortened version of the method getChildrenFromSelectionSet of the QueryTranspiler
class. The method transforms an AST into the internal tree representation.
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4.5.4 Resolving the internal tree

The purpose of the resolveInternalQueryTree method, defined in the QueryTranspiler class, is
to consume the internal tree representation, built using the logic of the preceding sections,
and return a JOOQ statement. Specifically, it returns a JOOQ Field, which represents a SQL
column. The Field returned by resolveInternalQueryTree is a Field of type JSON, indicating it
encapsulates a single column containing a JSON structure. A Field can be used in the select
function of JOOQ, which is analogous to a SQL SELECT statement. This return type was chosen
to allow the function to call itself recursively for all children of type Relation.

Within the resolveInternalQueryTree method, the table with the relationName of the provided
Relation is retrieved from the tables that were generated by the JOOQ code generator and as-
signed a unique alias. This aliased table is assigned to the outerTable variable.

After that, the children of the Relation are processed. The list of children of type Attribute
is converted into a list of columns of the outerTable with their respective graphQLFieldName in
lowercase as the field name. The list is called attributeNames. For each child of type Relation
the resolveInternalQueryTree method is invoked again. The results form the list subSelects, a
list of JSON Fields. For each recursive call, the getForRelationshipmethod of the WhereCondition
instance is used to generate a condition that is used to join each inner table to the outer table.
Furthermore, the arguments first, orderBy and after are extracted, as well as the sorting criteria
and filter arguments. A cursor is constructed from the fields of the order criteria. The condition
realizing the offset and the conditions for the filter arguments are generated using the methods
of WhereCondition.

Finally, the prepared data is used to construct a Common Table Expression (CTE) which pro-
vides the required data to construct the final JSON result. This CTE is depicted in Listing 4.3.

The argument first specifies how many results should be fetched. If none is provided, all
results are fetched. To facilitate this, an SQL LIMIT with the provided value is applied, if one is
provided.

If the field hasNextPage is requested, the CTE includes a column count_after_cursor. The
hasNextPage field on the PageInfo object type indicates if a next page exists. One solution to
obtain this information would be to always query for one more result from the database than
requested via the first argument. In this way, it would be possible to infer that a next page
only exists if this additional result has been obtained. Instead, a more elegant solution has
been chosen. If the hasNextPage field is requested, the number of results after the after cursor
is calculated. As seen in Listing 4.3 this column, count_after_cursor, is obtained by using a SQL
window function. The value of hasNextPage is true if count_after_cursor is greater than the value
of the argument first. The SQL function MAX must be used on count_after_cursor, because it
exists, with the same value, in every row. In other words, it is true if not all remaining results fit
on the current page.
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1 fun resolveInternalQueryTree(
2 relation: InternalQueryNode.Relation ,
3 joinCondition: Condition = DSL.noCondition ()
4 ): org.jooq.Field<JSON> {
5 // ...
6 val cte =
7 DSL.name("cte"). `as`(
8 DSL.select(attributeNames)
9 .select(subSelects)

10 .apply {
11 if (cursorRequested || endCursorRequested) select(cursor)
12 }
13 .apply {
14 if (hasNextPageRequested)
15 select(DSL.count ().over(). `as`("count_after_cursor"))
16 }
17 .from(outerTable)
18 .where(argumentConditions)
19 .and(joinCondition)
20 .and(afterCondition)
21 .orderBy(orderByFieldsWithDirection)
22 .apply { if (limitValue != null) limit(limitValue) }
23 )
24 // ...

Listing 4.3: CTE used to prepare the data required for the current level of the GraphQL resonse.
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If the cursor for an edge object is requested, it is also added to the CTE. This cursor column
contains a JSON object, whose keys are all fields by which the results of the CTE are ordered by
and their respective values. In a real-world application, this should be an opaque cursor (for
example, Base64-encoded), as specified in the GraphQL Cursor Connections Specification [23].
But for debugging and demonstration purposes, it is not encoded for this application.

The fields for sorting the results are provided in the input object orderBy. In addition to these
fields, the results are secondarily ordered by the fields of the primary key, if they are not already
part of the provided fields. If no orderBy input object is provided, the results are ordered by the
fields of the primary key. This ensures a deterministic order of results.

In addition to the CTE from Listing 4.3 subqueries to resolve the fields totalCount and
endCursor are constructed. These subqueries are depicted in Listing 4.4. The totalCountSubquery
uses the selectCount function of JOOQ, which constructs a SELECT COUNT(*) statement in SQL.
The subquery is constructed in such a way that the count is the number of rows the CTE would
have if it did not have an offset. The endCursorSubquery uses a SQL window function to obtain
the cursor value of the last row of the CTE.

1 // ...
2 val totalCountSubquery =
3 DSL.selectCount ()
4 .from(outerTable)
5 .where(argumentConditions)
6 .and(joinCondition)
7
8 val endCursorSubquery =
9 DSL.select(DSL.lastValue(DSL.field(cursor.name)).over())

10 .from(cte)
11 .limit(1)
12 // ...

Listing 4.4: Subqueries used for totalCount and endCursor.

The CTE and, if necessary, the subqueries are used to construct the JOOQ Field. If the Relation
is an object, the data is bundled into a JSON object. If it is a list, it is bundled into an array
of objects. Since the jsonObject function of JOOQ accepts a variable number of arguments,
the attributeNames and subSelects of the CTE are provided using the Kotlin spread operator
(i.e., asterisk). Since these collections are lists and the spread operator only works on typed
arrays, they need to be converted using toTypedArray. If the GraphQL field in the schema uses a
connection type, the connection structure is created, and the special pagination field values are
provided, using the subqueries for totalCount and endCursor, if requested. The return statement
of resolveInternalQueryTree, and thus the construction of the resulting JSON structure, can be
seen in Listing 4.5.
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1 // ...
2 return DSL.field(
3 DSL.with(cte).select(
4 when {
5 relation.connectionInfo != null -> {
6 // construct connection structure ...
7 }
8
9 relation.fieldTypeInfo.isList -> {

10 DSL.coalesce(
11 DSL.jsonArrayAgg(
12 DSL.jsonObject(
13 *attributeNames.toTypedArray (),
14 *subSelects.toTypedArray ()
15 )
16 ),
17 DSL.jsonArray ()
18 )
19 }
20
21 else -> {
22 DSL.jsonObject(
23 *attributeNames.toTypedArray (),
24 *subSelects.toTypedArray ()
25 )
26 }
27 }
28 ).from(cte)
29 ). `as`(relation.graphQLAlias)
30 }

Listing 4.5: Construction of the jOOQ field. The data from the CTE is put into JSON format.
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4.5.5 Constructing conditions

To construct the SQL query, different types of conditions are needed for the WHERE clause. These
conditions serve three purposes: to facilitate table joins, to allow data filtering based on the ar-
guments provided, and to support the after argument for pagination. The class WhereCondition
defines methods to facilitate these use cases. To initialize an instance of the WhereCondition
class, a function, that defines how conditions can be obtained given a relationship must be
provided.

For joining a parent table with a child table, as they appear in the internal tree structure, a
condition is created based on the specified relationship. Since this is specific to the applica-
tion context, getForRelationship uses the function getConditionForRelationship that was passed
when initializing the instance of the WhereCondition class (see Listing 4.6). The relationship name
matches the field name. Both tables have to be of the correct type, which is generated by JOOQ.
Using the type of tables allows the tables to use aliases. The relationship name is used together
with the table types to allow multiple relationships to have the same name and multiple rela-
tionships to exist between the same tables. Matching the types of tables also ensures that the
correctness of the defined condition can be checked at compile time. The custom definition of
condition also allows relationships to spread over multiple tables, for example, the relationship
between films and actors with the junction table film_actor. It would also be possible to have
a relationship from one table only to some entries of the other table by filtering them inside
the condition.

1 class WhereCondition(
2 private val getConditionForRelationship:
3 (String , Table <*>, Table <*>) -> Condition?
4 ) {
5 fun getForRelationship(
6 relationshipName: String ,
7 left: Table <*>,
8 right: Table <*>
9 ): Condition =

10 getConditionForRelationship(relationshipName , left , right)
11 ?: error(
12 "No relationship called $relationshipName" +
13 "found for tables $left and $right"
14 )
15 //...

Listing 4.6: Method that returns a condition that joins two tables.
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Listing 4.7 shows the function passed when constructing a WhereCondition for the exemplary
application. This defines how conditions can be obtained from relationships between tables in
the Sakila example database. The first relationship shown in Listing 4.7 describes the field actors
on the GraphQL type Film. Since the field occurs on the Film and has type Actor, the condition
connects the tables film and actor. Since this is a many-to-many relationship, a subquery with
the table film_actor is used to construct the condition. The second relationship describes the
relationship the table category has with itself. This condition is a simple equality condition that
joins the table category with itself where the parent_category_id matches the category_id. A
condition like this would not be possible without using JOOQ’s table types and thus allowing
SQL aliases, since the instances of category need to have different aliases.

1 fun getConditionForRelationship(
2 relationshipName: String , left: Table <*>, right: Table <*>
3 ): Condition? =
4 when {
5 relationshipName == "actors" && left is Film && right is Actor ->
6 DSL.exists(
7 DSL.selectOne ().from(FILM_ACTOR)
8 .where(left.FILM_ID.eq(FILM_ACTOR.FILM_ID)
9 .and(FILM_ACTOR.ACTOR_ID.eq(right.ACTOR_ID)))

10 )
11 relationshipName == "parent_category" && left is Category
12 && right is Category ->
13 left.PARENT_CATEGORY_ID.eq(right.CATEGORY_ID)
14 //...
15 else -> null
16 }

Listing 4.7: Application-specific lookup function that defines conditions. This is used as an argument
when initializing WhereCondition.

Moreover, the WhereCondition object handles data filtering using the getForArgument method.
It dynamically interprets the argument provided which matches a field on the table, generating
a condition using the EQ operator for its value. This also works for null values, generating the
IS NULL operator, and for lists, generating the IN operator.

Lastly, in the context of pagination, the WhereCondition object constructs conditions that en-
able after-based pagination. This is done by the getForAfterArgumentmethod. By leveraging the
current sorting and after argument, it creates a condition that positions the query to retrieve
data following a given point. This condition is an example of the seek method as described by
Markus Winand [33]. To construct this condition, the key-value pairs of the JSON cursor provided
as the after argument are processed in order. The cursor represents the exact position in the
result set, after which the next page of data should begin. The getForAfterArgument method
intelligently translates these cursor values into database conditions that implement the seek
behavior.
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The method iterates through each field-value pair in the cursor and, for each field, identifies
the corresponding field used as an order criterion. Depending on whether the order is ascending
or descending, it creates a condition that positions the query’s result set either before or after
the provided value. This process is recursively applied for each key-value pair in the cursor,
allowing the condition to accurately seek data according to the desired pagination point.

Consider an example of sorting films in ascending order by release year and descending order
by title. Furthermore, the page should start after a provided cursor. The cursor value provided
for the after argument is "{"release_year":2006, "title":"ZORRO ARK", "film_id":1000}" and
the value for the orderBy argument is {release_year:ASC, title: DESC}. Providing these values
leads to the condition in Listing 4.8 being generated.

1 allFilms.release_year > 2006
2 OR (
3 allFilms.release_year = 2006
4 AND (
5 allFilms.title < 'ZORRO ARK'
6 OR (
7 allFilms.title = 'ZORRO ARK'
8 AND allFilms.film_id > 1000
9 )

10 )
11 )

Listing 4.8: Example for a generated seek condition.
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5
Discussion

In this chapter, the performance of a SQL query generated by the implementation of Chapter 4 is
compared with the queries that would be issued when using basic resolvers. This is followed by a
comprehensive discussion of the limitations, constraints, and future possibilities of the GraphQL-
to-SQL mapping approach developed in the course of this thesis. Exploring its limitations and
potential for improvement provides a deeper understanding of the broader context in which
this solution operates.

5.1 Improvement over naive approach

This section compares the performance of a SQL query generated by BYOS with the queries that
would be executed by resolvers in the naive approach. This comparison serves as a demonstra-
tion of the performance gains achieved by addressing the N+1 problem and using a single SQL
query. It is important to note that the purpose of this section is not an exhaustive comparison
between approaches but rather a showcase of the potential optimization that can be achieved.
Performance depends on many factors, such as the chosen GraphQL query, the underlying data,
and the RDBMS. The example data used for this performance test consists of 1000 films and 200
actors.

Note that these times only describe the time consumed by the SQL query or queries. It does
not include the time to obtain them from the GraphQL query. The result of the generated SQL
query is already in JSON format, whereas the results of the queries in the naive approach would
still need to be processed into a JSON result. It is anticipated that converting the data acquired
through the naive approach into a JSON structure (and sorting it if, as in the example, the SQL
query has not already applied an order) would take a significant amount of time.

The performance test is performed on the query from Listing 1.1, which requests all films with
their title and the last names of their actors. The generated SQL query is shown in Listing 5.1. The
query begins with a WITH clause creating the CTE as described in Section 4.5.4, which retrieves
the titles of all films and defines a correlated subquery for the actors field. This nested query
also defines a CTE, which obtains the actors associated with each film. The inner CTE is used
to construct an array of objects containing the last names. Finally, the outer CTE is used to
construct an array of objects containing the film titles and the actor arrays.
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1 SELECT (
2 WITH
3 "cte" AS (
4 SELECT
5 "allFilms -0"."title" AS "title",
6 (
7 WITH
8 "cte" AS (
9 SELECT "actors -1"."last_name" AS "last_name"

10 FROM "public"."actor" AS "actors -1"
11 WHERE exists (
12 SELECT 1 AS "one"
13 FROM "public"."film_actor"
14 WHERE (
15 "allFilms -0"."film_id" =
16 "public"."film_actor"."film_id"
17 AND "public"."film_actor"."actor_id" =
18 "actors -1"."actor_id"
19 )
20 )
21 ORDER BY "actors -1"."actor_id" ASC
22 )
23 SELECT COALESCE(
24 JSON_AGG(JSON_BUILD_OBJECT('last_name ', "last_name")),
25 JSON_BUILD_ARRAY ()
26 )
27 FROM "cte"
28 ) AS "actors"
29 FROM "public"."film" AS "allFilms -0"
30 ORDER BY "allFilms -0"."film_id" ASC
31 )
32 SELECT COALESCE(
33 JSON_AGG(JSON_BUILD_OBJECT(
34 'title ', "title",
35 'actors ', "actors"
36 )),
37 JSON_BUILD_ARRAY ()
38 )
39 FROM "cte"
40 ) AS "allFilms";

Listing 5.1: Generated PostgreSQL query.
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The performance of the SQL query generated from the GraphQL query in Listing 5.1 was evalu-
ated, and its execution plan was retrieved using EXPLAIN ANALYZE. A graph depicting the execu-
tion plan is shown in Figure 5.1. It is important to note that this plan is generated by PostgreSQL
and other RDBMSs may create a more efficient execution plan. The plan shows that the foreign-
key join between the actor table and the film_actor table is executed via a Hash Join. The
result-set of the Hash Join is sorted by its actor_id and then aggregated. This aggregate is then
combined with the film table to produce the final result. The planning time was 3 ms and the
execution time was 46.5 ms. Performance did not show any noticeable difference when using a
field with a connection type instead (i.e., a type with an edges field).

Result

Aggregate

Index Scan
on film as "allFilms-0" using film_pkey Aggregate

Sort
by "actors-1".actor_id

Hash Join
on "actors-1".actor_id = film_actor.actor_id

Seq Scan
on actor as "actors-1" Hash

Bitmap Heap Scan
on film_actor

Bitmap Index Scan
using idx_fk_film_id

Figure 5.1: Execution plan for the generated SQL query from Listing 5.1.

The naive approach would be to request all films in one query (Listing 5.2) and after that
request the respective films for each film (Listing 5.3).

The first query, shown in Listing 5.2, results in a Sequential Scan, since the entire table is
selected. The measured planning time was 1.4 ms and the execution time was 0.7 ms.
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1 SELECT film.title , film.film_id
2 FROM film;

Listing 5.2: SQL query to request all films.

The second query (shown in Listing 5.3) is executed for every film, 1000 times in total, resulting
in the execution plan depicted in Figure 5.2 for each execution. Since it implements the same
foreign-key join as the generated query’s execution plan (Figure 5.1), it is a subtree of it. This
query required 1.8 ms of planning time and 0.4 ms of execution time during its initial execution.
Further executions reduced these times to 0.6 and 0.2 ms.

1 SELECT actor.last_name
2 FROM film_actor
3 JOIN actor ON film_actor.actor_id = actor.actor_id
4 WHERE film_actor.film_id = <film_id>;

Listing 5.3: SQL query to request all actors for a film given its film_id

Hash Join
on actor.actor_id = film_actor.actor_id

Seq Scan
on actor Hash

Bitmap Heap Scan
on film_actor

Bitmap Index Scan
using idx_fk_film_id

Figure 5.2: Execution plan for SQL query from Listing 5.3.

To conclude, the generated query took 49.5 ms. The naive approach resulted in 1001 queries.
These queries would require 803.5 ms in total, assuming that they are issued in sequence.

This example demonstrates the potential performance enhancements of the approach em-
ployed by BYOS. It could be argued that a well-designed API, for most use cases, would not
require or allow the retrieval of thousands of data entries, even when resolving deeper GraphQL
queries. However, subsequent tests have shown that even if only the first ten films (ordered by
their film_id) are requested, noticeable improvements can be achieved. The query generated
by BYOS required 3.7 ms (and already serves JSON in the structure using edges and node), whereas
the queries created by the naive approach required a total of 9.7 ms.
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5.2 Limitations and constraints

This section delves into the inherent challenges that emerge when adopting a generic approach
tomapping GraphQL queries to SQL. These challenges result from the combination of the generic
strategy with extensive GraphQL schemas and the dynamic nature of user-defined queries. Ex-
ploring these challenges allows for a deeper understanding of the intricate interplay between
the adaptability of GraphQL and the structured domain of SQL, as well as the trade-offs that
arise when combining the two domains.

5.2.1 Schema constraints

Since the GraphQL schema, as well as the SQL schema, should be controlled by the user, instead
of generating the GraphQL schema, one of them imposes some restrictions on the other. The
direction in which this dependency acts depends on which is designed first.

The GraphQL object type names must match the SQL table names. In the same way, GraphQL
field names with scalar types must match SQL column names.

If these restrictions are not feasible, a simple solution for the current implementation would
be to use SQL views that use the required names as mentioned in Section 3.4.

5.2.2 Configuration

To allow nested GraphQL queries, which are crucial for a GraphQL API, the server requires in-
formation on how to join tables. This information about relationships between tables must be
configured by hand.

The configuration using JOOQ is a unique feature and an advantage of the provided imple-
mentation. It provides both type safety and guarantees that the SQL code written is compliant
with the SQL schema, both at compile time.

However, setting up relationships with JOOQ code requires that the person writing the code
has a general understanding of JOOQ and SQL.

5.2.3 Business logic

A generic approach naturally represents Create, Read, Update and Delete (CRUD) operations on
the database. The approach in this thesis is limited to queries and therefore read operations,
but a similar approach could be used to generate simple mutations and thus create, update,
and delete operations. Certainly, it would also be possible to use a CQRS approach and handle
commands separately from queries [24].
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In any case, the generic approach struggles with queries that involve custom business logic.
Such queries cannot be simply mapped to an SQL query and would have to be handled differ-
ently.

As mentioned in Section 3.4 SQL views could be used to solve this problem but, while possi-
ble, may not be viable for complex business logic. If queries with complex business logic are
required, the current solution provides the option to filter these queries and handle them dif-
ferently. Some queries may, for example, be filtered by name and resolved using an ordinary
resolver approach.

5.3 Potential areas for improvement and future work

While the current implementation of the generic GraphQL to SQL mapping supports the core
features of GraphQL as well as additional features and use cases there is still more that could
be explored and implemented in the future. This section lists areas and specific aspects that
could be promising for future research.

5.3.1 Handling change

Modern web applications are constantly changing, and so their APIs have to handle change. One
thing generated schemas (as generated by GraphQL server tools from Section 2.3.2.1) struggle
with is that the GraphQL schema has to change every time the underlying SQL schema changes
[34]. For BYOS the GraphQL schema does not change automatically but has to be changed
by hand (or SQL views have to be employed). To prevent this pitfall and remove the schema
constraint from Section 5.2.1 for our approach, it might be useful to add a configuration file which
maps GraphQL object types to JOOQ tables. Using JOOQ tables ensures that the table exists on
the database. If this configuration is enforced for every object type and field (other than paging-
specific types and fields), it would be impossible for the names to be mismatched. If a table did
not exist, a compile time error would occur.

Additionally, this would support migration by preventing subtle schema mismatches that
could lead to runtime errors. For migration, SQL views could be used to ensure that the old
and new API versions find their expected tables or views in the database. The view could resem-
ble the old table until the migration to the new data representation is complete.

Further research could be conducted to explore the difficulties of migrating schemas with the
suggested solution, which is a significant factor in real-world applications.
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5.3.2 GraphQL features

While this thesis implemented core features of GraphQL, there remain several useful aspects of
the GraphQL specification [9] that were beyond the scope and could be explored in future work.

An aspect of GraphQL that could be explored further is its extensive type system, as described
in the GraphQL documentation [11].

GraphQL has a small set of predefined scalar types (Int, Float, String, Boolean, and ID). How-
ever, it is possible to define custom scalar types such as Date. Improvements of the generic
mapping approach may include allowing the use of custom scalar types.

As stated in Section 3.3.3, lists of scalar values are presently not supported. In the future, if
a scenario arises where a BYOS use case involves SQL arrays, it may prove beneficial to permit
their representation as scalar value lists in the GraphQL schema.

Similarly to custom scalar types, GraphQL allows developers to define enumeration types and
input types. The latter describes objects that can be used as arguments to allow for more
complex arguments than scalar values. The processing of such arguments, and how they could
be utilized in the generic mapping approach, could also be investigated in future work.

Interfaces can also be implemented in GraphQL similar to object types. An object type can
implement an interface, in which case it has to include all fields of the interface. Inline fragments
can be used to check for the type of an object and retrieve its specific fields. Union types act in
a similar way. Instead of having all object types implement common fields, it allows different
object types to be grouped under one union type. Again, inline fragments can be used to access
fields of a specific type when dealing with union types. Interfaces, union types, and fragments
are currently not supported and may be of interest when extending the implementation.

In addition to the features of the GraphQL schema mentioned so far, some query features,
which are explained in the GraphQL documentation [10], are also yet to be implemented. These
include fragments, variables, and directives.

Similarly to the inline fragments that can be used in conjunction with interfaces and union
type, GraphQL offers fragments that can be defined similar to object types in the query document
or the schema. These act as sets of fields that can be reused. Currently, queries that use
fragments are not supported, but future endeavors could make them possible.

Sophisticated client applications would most likely not opt to manipulate the entire query
string when an input is changed and instead utilize GraphQL’s variable feature. A variable can
be used as an argument, thus changing the query depending on the value bound to the variable.
A future version of the implementation could handle such variables, for example, by flattening
the AST document with variable definitions into one without, by inlining their values.
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Lastly, directives are similar to variables as they allow changes to the query while keeping the
query string unchanged. The GraphQL specification [9] defines the two directives @include(if:
Boolean) and @skip(if: Boolean), which makes it possible to specify if a field should be included
in the response based on a variable. Some GraphQL server implementations also allow for the
definition of custom directives. Future work could enable the two directives of the specification
and explore common use cases for custom directives and how these could be supported.

5.3.3 Error handling

The GraphQL specification [9] defines that if errors occur, the value of the data entry should be
null and the errors entry should be an array of errors. In its current state, the implementation
supports this behavior for validation errors. However, custom errors are not possible, as they
are an example of business logic. Currently, if internal errors occur due to the GraphQL query or
schema not meeting the implementation constraints, the caller receives an internal server error
with error code 500. An improvement would be to make these errors more verbose by adding a
description to the message field and adjusting the error code where appropriate. However, the
error messages should be chosen carefully, as reporting that a table was not found or that a
relationship between two tables could not be found can reveal information about the database
schema.

5.3.4 Supporting additional use cases

As mentioned in Section 3.3.1, the functionality of GraphQL arguments depends completely on
their individual implementation.

A generic approach cannot offer the limitless potential that a developer could access if they
were to create their own resolver functions. As mentioned in Section 5.2.3 queries that exceed
data reading are challenging. The same applies to arguments that perform tasks other than
what is currently provided (filtering on equality, sorting based on fields, and pagination).

It is possible to achieve all of these functionalities with the current implementation using SQL
views, as previously mentioned in Section 3.4.

However, it might be a requirement to allow queries to access data that is not directly present
in the database without using views. For example, if not all developers have access to the
database. One possibility to achieve this would be to add the possibility to define virtual fields
or tables. This approach would be similar to what Join Monster [19] provides in the form of
computed columns [35] and derived tables [36]. The former denotes providing a JavaScript or
SQL function to compute a virtual column, and thus a field based on other columns. The latter
means that SQL table expressions can be used instead of table names, which works as a virtual
table. In BYOS, such specific configurations would be made in JOOQ.
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Since backward pagination, as discussed in Section 3.2.5, is presently not supported but op-
erates similarly to forward pagination, the functionality of the last and before arguments may
be implemented in the future.

Although the implementation discussed in this thesis supports several conventional use cases
of GraphQL arguments, offering support for more would most certainly be useful. Currently fil-
tering is only possible based on equality, since arguments are translated into conditions, that
are then used in WHERE clauses. To provide more elaborate filtering, it might be useful to expose
more of SQLs comparison operators. This could be done, similar to Hasura [17], by using input
objects instead of scalars for arguments. In this way, in addition to the EQ operator, operators
such as NE, LT, LE, LTE, GT, GE, and GTE could be exposed. In a similar way string matching op-
erators such as LIKE and many more SQL operators could be exposed. These would have to be
specified in the schema and are not automatically added to queries and fields as they would be
when using a GraphQL server tool that automatically generates the GraphQL schema (see Sec-
tion 2.3.2.1). This would allow developers to choose what filter options should be made available
on which queries and fields.

One powerful aspect of SQL databases that is, except for the totalCount field, only usable
when using SQL views, is aggregation. Views can be used to provide fields that hold aggregates
over a table.

Adding some form of generic aggregation over tables in the future should be easy to imple-
ment and might prove useful. If a built-in way to do this would be required, one way would be
to, like Join Monster [19], allow virtual fields that compute a value with provided SQL code [35].
Again, differentiating it from Join Monster, BYOS would have users define type-safe JOOQ code
instead of having SQL code in strings. A more elaborate approach to offering aggregation would
be to allow the definition of aggregate top level fields, similar to those generated by Hasura [37].
The fields on the aggregate type of such a field represent the different aggregate functions (such
as MAX, COUNT, SUM, etc.) on which the fields to be aggregated can be chosen. It would be equally
possible to flip the order, having the fields representing aggregate functions on the fields that
represent columns.

5.3.5 Security

This section investigates the security of the implementation as well as security-related topics
that could arise when applying it to a real-world application.

An aspect that has to be considered when using user input in SQL queries is the option of
SQL injections. Since JOOQ is used for all SQL operations and no plain SQL operations are used,
the implementation provides an API that prevents SQL injections.
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A potential issue with other tools is that the GraphQL schema is generated instead of created
by developers, possibly exposing tables and columns that should not bemade public. Since only
the tables and columns that are represented in the GraphQL schema, are exposed, everything
else is inaccessible.

Malicious users could request large amounts of data, thus overloading the server. One way
to prevent this, as well as to prevent users from accidentally request too large amounts of data,
is to limit the page size. A common practice is to use pagination, making the first argument
required, and returning a custom error when its value extends a certain threshold. Therefore,
this would be another case where more error functionality (see Section 5.3.3) would be useful.
Additionally, it might prove helpful to limit the depth of GraphQL queries since, even with a page
limit, malicious users could issue a query of arbitrary depth. While the improved scalability of
the mapping approach reduces the effectiveness of such an attack, very large SQL queries might
still slow the database. Further versions of the implementation may include such features and
utilize custom errors in their realization.

Since most APIs are not public, future research may also investigate how authentication and
authorization are used in GraphQL, whether the implementation needs to be extended to sup-
port them, and if so, how. Regarding authentication, authenticating users via the HTTP Authoriza-
tion header within application-specific code may be sufficient. As for authorization, numerous
methods are available. Especially when seeking to replicate the row-level security features of
the RDBMS, certain authentication methods may be better suited than others.
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6
Conclusion

In this thesis, we set out to conceptualize a method for transpiling GraphQL queries into SQL
queries. Our primary goal was to bridge the gap between the flexible nature of GraphQL and the
structured querying capabilities of SQL, while avoiding the N+1 problem. This should additionally
result in less boilerplate code, and thus less effort for developers.

To achieve this, we first introduced key concepts of GraphQL and the GraphQL AST. Further-
more, existing approaches for mapping GraphQL to SQL were presented and their limitations
discussed.

Subsequently, the approach for our generic mapping, with its challenges and limitations, was
explained.

In the next part, the implementation of the prototypical application utilizing the previously
explained approach was presented.

The improvement in performance, when comparing our implementation to the naive ap-
proach, was shown based on an example.

Finally, it was discussed how the prototype could be improved and extended to an extensive
library.

According to the author’s assessment, the objectives were achieved. The N+1 problem does
not occur for the presented solution. However, it should be noted that a GraphQL query does
not necessarily result in exactly one SQL query, but rather each root field does. This means that
if a GraphQL query consists of multiple root fields, one SQL query is issued for each one. Since
the resolver approach is not used, the redundancy and the amount of code required when the
schema is expanded are dramatically reduced. When the SQL schema is expanded, the GraphQL
schema has to be expanded accordingly, and relationships between the new and existing tables
have to be registered.
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