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Abstract

PL/pgSQL is an imperative language extension that is implemented as an inter-

preter layered on top of PostgreSQL. This introduces friction during execution be-

cause, for each embedded statement, an executor must be instantiated, run, and

finally purged.

In this thesis, we investigate what happens when we translate PL/pgSQL func-

tions into equivalent C functions, thus eliminating the interpretation overhead of the

PL/pgSQL interpreter.
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1
Introduction

PostgreSQL allows for an procedural dialect called PL/SQL to be used in User Defined Functions.

This dialect has several imperative control flow constructs, like loops, conditionals and statement-

based evaluation, supported within its language. An important feature however is that the user

can use normal SQL queries as value-returning expressions. Where a procedural or imperative-

versed developer might benefit from this kind of expressiveness the resulting functions then

live in the worlds of PL/SQL and standard SQL query execution. Switching between those two

contexts takes time.

Following the idiom of moving computation close to the data, the works [1][2][3] have shown

that by compiling PL/SQL into standard SQL queries. By employing recursive Common Table

Expressions and everything SQL:1999 has to offer they were able to remove any need to switch

contexts at all. Having a sole SQL query yielded a significant runtime reduction.

Where those works removed the imperative style altogether this work implements the same

PL/SQL UDFs within a C language extension for PostgreSQL. Building an extension directly onto

PostgreSQL’s own data types and functions allows us to use the same functions and procedures

the PL/SQL version would. As well as shortening trivial operations by implementing them directly

in C.

This might suggest a similar approach of removing the need for context switches but this work

aims to identify possible overhead imposed by the PL/pgSQL interpretation of PostgreSQL. The

context switches remain as the embedded queries were not translated to C but still rely on the

power of the PostgreSQL executor.

Having no parsing and interpretation overhead should improve the runtime of the C version

compared to the original. What we found is that this advantage is minimal. We measured that

the C language implementations are around one to five percent faster than the original PL/pgSQL

versions. In more complex use cases of academic interest, like Marching Squares, the original

version outperforms our approach.
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2
Basics

Before jumping straight into the feat of translating a UDF from PL/pgSQL into C we should

understand some basic acronyms and terms.

2.1 SQL

The SQL is the established language to communicate with most every Relational Database Man-

agement System (RDBMS). As it is used to manage data and structure of databases it can be

subsected into more domain-specific aspects:

• The Data Definition Language (DDL) allows the creation, alteration and dropping of tables,

functions, data types, indices and so on.

• Whereas the Data Manipulation Language (DML) fills the structure defined with the DDL

with information. Also being able to modify and select said information from the database.

Whilst SQL itself is standardized and has six revisions with SQL:2006 being the latest, every

RDBMS implementation differs the farther the functionality strays from the basic SELECT-FROM-

WHERE clauses.

With every RDBMS having a different flavor and level between standards. The system and

version used in this work is PostgreSQL14.0.

2.2 PostgreSQL

This work is only possible through the Database it is explored on. PostgreSQL is the RDBMS

implementing the functionality expressed in the SQL standard. It is based on the works of the

POSTGRES Project at the Berkeley Computer Science Department of the University of California.

PostgreSQL ows its nickname Postgres this hereditary basis.

The current character of PostgreSQL as an Open Source Project allows for a wide range of

distributions on several platforms. Coinciding with this large user base the project provides

solid end-user documentation [4]. Having an OSP makes it possible to take a deep dive into its

inner workings. This is especially fruitful for us as this work attempts to formulate functions

that integrate structures found in the implementation of the engine.
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2.3 PL/SQL

PL/SQL or in this work PL/pgSQL – the pg standing for PostgreSQL is a SQL language extension

that allows users to interact with the database procedurally and imperatively. PostgreSQLsup-

ports its variant with different imperative language constructs. Notable features are loops,

Conditionals and Variable Assignment.

Normal SQL queries can be used inside each of the expressions. For example one could assign

query 𝑞 to a variable 𝑣 like 𝑣 := (𝑄);. Furthermore. Every SQL expression 𝑒 is a valid expression

in PL/pgSQL. [5]

2.4 User Defined Functions

User Defined Functions are exactly what the name suggests. A user of the RDBMS is able to

define a function that consumes several arguments.

The naive attempt would be to take a Query 𝑞 that either constant or requires an argument

(see Listing 2.1) and put it into a UDF 𝑓 and from then on instead of having to write out 𝑞 the
user can simply call it with SELECT 𝑓(100);.

1 CREATE OR REPLACE FUNCTION 𝑓(n INTEGER)
2 RETURNS INTEGER AS
3 $$
4 SELECT SUM(x)

5 FROM generate_series (1, n) AS x
6 $$
7 LANGUAGE SQL STRICT;

Listing 2.1: A plain SQL UDF

They can also be used to return a table result such as the built-in function generate_series

as used in Listing 2.1 Line 5. Such UDFs allow for the compartmentalization of complex queries

and the reusability of reoccurring code snippets across the database.

Other than plain PostgreSQL style SQL PostgreSQL supports other language styles to be used

in an UDF definition. Such languages are Python, Perl and most notably the aforementioned

PL/pgSQL since Release 6.4 [6]:

1 CREATE OR REPLACE FUNCTION 𝑓′(n INTEGER)
2 RETURNS INTEGER AS

3 $$
4 DECLARE
5 sum INTEGER := 0;
6 BEGIN
7 FOR i IN 1..n LOOP
8 sum := sum + i;
9 END LOOP;
10
11 RETURN sum;
12 END

13 $$

4 Chapter 2 Basics



14 LANGUAGE PLPGSQL STRICT;

Listing 2.2: A simple PL/pgSQL UDF

2.5 Server Programming Interface

Now that we have established the use of User Defined Functions it should not surprise that there

are further ways to adapt the DBMS to fit a user’s requirements. One of those is to develop and

use PostgreSQL extensions that plugin right at the server engine level. The preferred language

implementing these in is C. For the developers convenience PostgreSQL ships with Makefiles for

the task.

To query knowledge from tables inside the database the developer has to use the Server

Programming Interface (SPI).

To get knowledge from the database the respective function first has to initiate the connection

to the database using the SPI_connect command. The next step is to formulate the query that

results in the required information. Similar to normal database interaction these queries are

formulated in SQL. Of cause, they can depend upon input arguments. Therefore we prepare

statements. Using SPI we prepare a cursor that results in a plan that can be executed later on.

Once the holes in the plan can be filled with known values these are used to execute the

query. At this point, it is imported to know any arguments that are NULL. The results are then

found in the SPI_tuptable To get the values they are accessed with SPI_getbinval and by then it

is possible to find out what the desired value is or if the value is null.

2.6 What are Object Identifiers (OIDs)?

In PostgreSQL, everything has an Object Identifier (OID). From tables to data types, from functions

to operators and roles. Everything is managed through those identifiers. This is important

concerning using any of the types, functions and operators et cetera a user may have provided

themselves.

One could find out the OID manually by looking it up in the fitting system catalog pg_𝑐𝑎𝑡𝑎𝑙𝑜𝑔 [7].
There are catalogs for everything. From A like aggregate to ZU for user_mapping. For the extent

of this work, we were only interested in the catalogs for Types, Operators and Procedures.

This rather manual labor takes time and ”Only works on my machine” as the database-wide

identifiers are assigned after CREATE-statements of the respective definitions. A more suited way

to get hold of the identifiers is to use the internal to_reg𝑐𝑎𝑡𝑎𝑙𝑜𝑔-function that can be used to

lookup the function with its given name. As this function is not a directly callable C function but

rather a PG_FUNCTION as is the one being implemented onemust use the provided interface. Using

a DirectFunctionCall1 with the aforementioned built-in and the name of the desired object as

arguments one can recover the used OID at the time of CREATE EXTENSION.

2.5 Server Programming Interface 5





3
From PL/pgSQL to C

In the previous Chapter we introduced the concept of procedural language UDFs. This Chapter

is dedicated to exploring the several aspects that will have to be taken into consideration when

and how a translation of the PL/pgSQL dialect into the C language is achieved.

Where we previously looked at a toy example of a PL/pgSQL UDF the example in Listing 3.1

provides a more real world example. The function identifies suppliers that did not successful

fulfill orders in a timely manner.

In this function we identify multiple aspects that invoke a sense of C-like imperative style

motivating the task of translating it into pure C.

1 DROP FUNCTION order_kept_waiting(int ,int);

2 CREATE FUNCTION order_kept_waiting(suppkey int , orderkey int)
3 RETURNS boolean AS

4 $$
5 DECLARE

6 lis lineitem [];
7 li lineitem;
8 blame boolean := false; -- is suppkey to blame?
9 multi boolean := false; -- does this order have multiple suppliers?
10 BEGIN

11 lis := (SELECT array_agg(l)
12 FROM lineitem AS l

13 WHERE l.l_orderkey = orderkey);
14 FOREACH li IN ARRAY lis LOOP
15 multi := multi OR li.l_suppkey <> suppkey;
16 IF li.l_receiptdate > li.l_commitdate THEN
17 IF li.l_suppkey <> suppkey THEN
18 RETURN false;
19 ELSE
20 blame := true;
21 END IF;
22 END IF;
23 END LOOP;
24 RETURN multi AND blame;
25 END;

26 $$
27 LANGUAGE PLPGSQL;

Listing 3.1: PL/SQL reimplementation of TPC-H query Q21
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𝜏 𝑓(𝜏1 𝜈1, …, 𝜏𝑛 𝜈𝑛)
{

// [...]

}

Listing (3.3) Naïve C function

PG_FUNCTION_INFO_V1(𝑓);
Datum 𝑓(PG_FUNCTION_ARGS)
{

Datum 𝜈1 = PG_GETARG_DATUM(0);
// [...]

Datum 𝜈𝑛 = PG_GETARG_DATUM(𝑛 − 1);
}

Listing (3.4) Magic Function definition

Figure 3.1: ”Normal” C function definition vs. C function with ”Version 1” calling convention

3.1 Defining Dynamically loaded Functions

When developing C functions that should be callable from other Postgres functions these func-

tions should adhere to the ”Version 1” calling conventions [8]. Meaning they should be exposed

like so:

CREATE FUNCTION 𝑓(𝜈1 𝜏1, …, 𝜈𝑛 𝜏𝑛)
RETURNS 𝜏
AS '$libdir/𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛', '𝑓'
LANGUAGE C;

Listing 3.2: SQL DDL for C language functions

'$libdir/𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛' is the path to the object file of the extension. Postgres will substitute
′$libdir' with the path to the extension folder where the object file to the 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 resides. 𝑓
is the name of the function that we want to expose to the user.

The aforementioned object file has to be present before loading the function. Postgres won’t

start a compilation process. This has to be manually done.

Whilst loading the function the database checks whether it was compiled for a compatible

database. An obvious incompatibility would be different major release versions of Postgres. This

requires a magic block to be present in the code. This magic block earns the nickname for these

types of functions that are also called Magic Functions.

PG_MODULE_MAGIC;

To access this macro and every other macro or builtin function it is required to include the

header files postgres.h and fmgr.h as well as every other necessary header file that comes up

in interaction with builtins.

According to the v1 calling conventions the C function header is not an analogue to the

header of Listing 3.2 as the left Listing in Table 3.1 but rather has to uphold the convention with

announcing itself with the macro PG_FUNCTION_INFO_V1 and returning a value of type Datum. The 𝑛
arguments also are replaced by the macro PG_FUNCTION_ARGS. To access these Postgres provides

the macros PG_GETARG_𝜏 where 𝜏 is the type of a builtin. These will be discussed later on in

Subsection 3.6.0.1.

8 Chapter 3 From PL/pgSQL to C



𝜏 𝑓(𝜏1 𝜈1, …, 𝜏𝑛 𝜈𝑛)
{

// [...]

}

PG_FUNCTION_INFO_V1(𝑓);
Datum 𝑓(PG_FUNCTION_ARGS)
{

Datum 𝜈1 = PG_GETARG_DATUM(0);
// [...]

Datum 𝜈𝑛 = PG_GETARG_DATUM(𝑛 − 1);
}

Table 3.1: ”Normal” C function Definition vs. Magic Function Definition

The right Listing in Table 3.1 only retrieves the arguments as of type Datum. Why this is a

sensible approach will be discussed in the successive section.

3.2 Handling Datums

When taking in the lines above one might ask themselves ”What is Datum ?” The short answer is

Everything is a Datum . And when interacting with builtins it is wise to seldom force them to an

actual value. Simply spoken Datum is the most general representation of data available.

Where in object-oriented languages like Java there is a Object class that everything inherits

trades from, here we have an uintptr_t. It is an unsigned integer type that is exactly the size

of a pointer. The ”size of a pointer” part is important as a Datum will both be a pointer to more

complex types as well as holding values in of itself that may be cast to something like an actual

integer or floating value.

Regarding the built-in types, there are functions in the style of DatumGet𝜏 and 𝜏GetDatum to un-

pack and pack values. These are the most useful when handling primitive types or for accessing

structs. A more thorough dive into Types can be found in Section 3.6.

3.3 Outlining the Control Flow

As PL/pgSQL presents a programming style that allows for complex control flow. So it is no

surprise that the translation in C has to find equivalences to those expressions. Luckily both

PL/pgSQL and C are based on imperative paradigms.

3.3.1 Declaration, Initialisation and Assignment

One crucial part of imperative style is the extraction of subexpressions into constants and

variables. This concept can be split up into three components. First the declaration of the

variable with its name and type of it. Then the initialisation with a value. Normally done

by assigning it to the variable name. The process of assigning values to the variable can be

influenced by other control flow decisions.

PL/pgSQL insist on declaration of variables for each BEGIN...END;-block unless there are no

varibles present. Such a block presents itself as shown in Table 3.2.

3.2 Handling Datums 9



PL/pgSQL statement C statement

DECLARE
𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑛𝑎𝑚𝑒1 𝜏1;
𝑛𝑎𝑚𝑒2 𝜏2 := 𝜈2

BEGIN
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END;

// --- DECLARE --------------
𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠
Datum 𝑛𝑎𝑚𝑒1; // 𝜏1
Datum 𝑛𝑎𝑚𝑒2 = 𝜈2; // 𝜏2
// ---------------------------
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝜈 := 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛; 𝜈 = 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛;

Table 3.2: Translation of Declarations and Assignment

Assignment can happen in both the declaration of the variable and the BEGIN...END;-block.

The differences in syntax are marginal as the PL/pgSQL assignment operator (:=) gets virtually

replaced by the standard C assignment operator (=).

3.3.2 Condtitionals

To be able to construct more complex control flow branching is necessary. PL/pgSQL allows

its users the use of IF to enable decisions dependend on boolExps. Those expressions can be

combined using Logical Conjunctions (AND) and Disjunctions (OR).

Table 3.3 shows the direct translation of the conditionals. Where C encapsulates the 𝑏𝑜𝑜𝑙𝐸𝑥𝑝
with parenthesis and the 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 by opening a new scope using brackets, the PL/pgSQL cap-

tures the expression between the IF and THEN. The statements are themselves scoped by THEN

and END IF;

Branching with ELSE is done simply by placing the keyword between THEN and END IF;. Similar

to the C translation.

The option to require another boolean expression to be true for the ELSE branch is possible

using ELSIF instead and putting the new boolean expression between it and THEN. In C this

keyword is an extension of else by starting a new if in a bracketless scope.

3.3.3 Loops

Coming to loops. PL/pgSQL supports several flavors of them [9]. In this work, we encountered

the loop constructs shown in Table 3.4.

Beginning with the option for infinite loops using solely the LOOP construct. To exit these

the control commands BREAK and CONTINUE are also present and found their direct counterparts.

Whilst infinite loops are interesting most use cases require finite loops. Starting with WHILE loops

that – like most programming languages – require a boolean expression that evaluates to TRUE

to run.

Next, we have the FOR loop. Allowing for more fine control over looping over integer types.

Indifferent from the textbook definitions of for loops the values of 𝑠𝑡𝑎𝑟𝑡, 𝑛𝑎𝑚𝑒, 𝑒𝑛𝑑 ∈ ℤ with

𝑠𝑡𝑎𝑟𝑡 ≤ 𝑛𝑎𝑚𝑒 ≤ 𝑒𝑛𝑑 or in the case of REVERSE where 𝑠𝑡𝑎𝑟𝑡 > 𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡 ≥ 𝑛𝑎𝑚𝑒 ≥ 𝑒𝑛𝑑. The

10 Chapter 3 From PL/pgSQL to C



PL/SQL C

𝑏𝑜𝑜𝑙𝐸𝑥𝑝 AND 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 && 𝑏𝑜𝑜𝑙𝐸𝑥𝑝
𝑏𝑜𝑜𝑙𝐸𝑥𝑝 OR 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 || 𝑏𝑜𝑜𝑙𝐸𝑥𝑝
IF 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 THEN
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END IF;

if (𝑏𝑜𝑜𝑙𝐸𝑥𝑝) {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

IF 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 THEN
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

ELSE
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END IF;

if (𝑏𝑜𝑜𝑙𝐸𝑥𝑝) {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

} else {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

}

IF 𝑏𝑜𝑜𝑙𝐸𝑥𝑝1 THEN
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

ELSIF 𝑏𝑜𝑜𝑙𝐸𝑥𝑝2 THEN
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END IF;

if (𝑏𝑜𝑜𝑙𝐸𝑥𝑝1) {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

} else if (𝑏𝑜𝑜𝑙𝐸𝑥𝑝2) {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

}

Table 3.3: Translation of Conditionals (Conjunction, Disjunction & Branching)

stepsize also is controllable using the argument 𝑠𝑡𝑒𝑝. The comparison between the languages is

observable in Table 3.4.

The last kind of loop encountered in this work is the FOREACH loop which iterates over SQL

arrays. The keyword ARRAY annotates this as well. Table 3.4 presents a lot of boilerplate compared

to the previous translations. Where the PL/pgSQL variant is compact and concise in its usage.

Meaning the user solely has to provide the array and the new 𝜈 its elements should be bound to;

the C translation requires a lot more knowledge about the array. typlen, typbyval and typalign

will hold information about the data type stored in the array. get_typlenbyvalalign retrieves

these datapoints. For further information about Arrays refer to Section 3.8. While this allows

knowledge of the contents structure, iteration or looping over it is of the domain of the array_iter

struct. To iterate over it we employ a for loop that increments a run variable that is then used

in array_iter_next. This returns the desired 𝜈 element.

3.4 Querying the Database

PL/pgSQL supports embedded SQL queries as both variable assigned and embedded expressions.

For the embedded expressions we have to extract a descriptive name and convert it to a Meta-

Variable. From there every query is of the schema 𝑛𝑎𝑚𝑒 := (𝑞)[𝜈1, … , 𝜈𝑛] where 𝜈𝑖 represent free
variables present in query 𝑞. Their values enter from other variables.

We see this behavior in the Original Query in Table 3.5. There is an example such application

in PL/pgSQL with the minor difference that in any real-world occurrence will have the $1 already

replaced with the label orderkey.

A modification we make to handle query results consistently is to rewrite the projections

SELECT t.* into ones where instead of multiple columns we return one like SELECT t. With this,

we can decompose the Row Type (see Section 3.6 later on.
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PL/pgSQL loop construct C translation

LOOP
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END LOOP;

while (true) {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

}

IF 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 THEN
EXIT;

END IF;

EXIT WHEN 𝑏𝑜𝑜𝑙𝐸𝑥𝑝;

if (𝑏𝑜𝑜𝑙𝐸𝑥𝑝)
break;

IF 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 THEN
CONTINUE;

END IF;

CONTINUE WHEN 𝑏𝑜𝑜𝑙𝐸𝑥𝑝;

if (𝑏𝑜𝑜𝑙𝐸𝑥𝑝)
continue;

WHILE 𝑏𝑜𝑜𝑙𝐸𝑥𝑝 LOOP
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END LOOP;

while (𝑏𝑜𝑜𝑙𝐸𝑥𝑝) {
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

}

FOR 𝜈 IN 𝑠𝑡𝑎𝑟𝑡..𝑒𝑛𝑑 LOOP
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END LOOP;

FOR 𝜈 IN 𝑠𝑡𝑎𝑟𝑡..𝑒𝑛𝑑 BY 𝑠𝑡𝑒𝑝 LOOP
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END LOOP;

FOR 𝜈 IN REVERSE 𝑠𝑡𝑎𝑟𝑡..𝑒𝑛𝑑 LOOP
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END LOOP;

for (int 𝜈 = 𝑠𝑡𝑎𝑟𝑡; 𝜈 <= 𝑒𝑛𝑑; 𝜈++)
{ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 }

for (int 𝜈 = 𝑠𝑡𝑎𝑟𝑡; 𝜈 <= 𝑒𝑛𝑑; 𝜈 += 𝑠𝑡𝑒𝑝)
{ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 }

for (int 𝜈 = 𝑠𝑡𝑎𝑟𝑡; 𝜈 >= 𝑒𝑛𝑑; 𝜈--)
{ 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 }

FOREACH 𝜈 IN ARRAY 𝜈𝑎𝑟𝑟 LOOP
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

END LOOP;

array_iter it;

int16 typlen;
bool isNull , typbyval;
char typalign;

int nitems = DatumGetInt32(

DirectFunctionCall1(

array_cardinality , 𝜈𝑎𝑟𝑟));

get_typlenbyvalalign(

ARR_ELEMTYPE(𝜈𝑎𝑟𝑟),
&typlen , &typbyval , &typalign);

array_iter_setup (&it , 𝜈𝑎𝑟𝑟);
Datum 𝜈;

for (int i = 0; i < nitems; i++ ){

𝜈 = array_iter_next(
&it , &isNull , i,

typlen , typbyval , typalign);
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

}

Table 3.4: PL/pgSQL to C better caption
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Starting there we can remember the introduction of the SPI in the previous chapter. SPI is

needed to connect to the database and send off queries. Therefore the function 𝑓 has first to

connect to it and from then on we can use SPI procedures in the C definition of 𝑓.

Every invocation of a query is a two-part process. On the one hand the query plan has to be

constructed with possible holes for free variables and on another hand the execution of said

plan taking in arguments.

For the setup, we require a SPIPlanPtr that holds a prepared cursor, ie. the query 𝑞 with

additional information. When observing Table 3.5’s 1 Plan Setup this pointer is declared

outside of the function. We do this together with SPI_keepplan to hold on to the plan after

a function call. As the query with holes is a static piece of information there is no need to

reconstruct it with every invocation of 𝑓. Especially since 𝑓 might be called a large number of

times within a query itself.

Another part of this setup is an array of the length of 𝑛 where 𝑛 is the number of free variables

in 𝑞. The argtypes array holds the OIDs of the types of said free variables. How these OIDs can

be found out will be discussed in Section 3.6. The query 𝑞, the number of free variables 𝑛 and

their types 𝜏𝑖 are all that is needed to construct the plan using SPI_prepare_cursor.

For later execution, we also prepare two more arrays in this step. The values and NULLs arrays.

Each is supposed to keep knowledge about the arguments. The first will be filled with the values

of type Datum for the 𝜈𝑖 and the latter sets the markers whether these 𝜈𝑖 are of value SQL NULL.

The execution of the plan requires these arrays to be filled. This happens right away in 2

Execution of Plan in Table 3.5. We move the initialization or value assignment close to plan

execution both can be dependent on value changes in loops. But with the plan, the value and

null store we have everything to invoke SPI_execute_plan. The two additional arguments are a

read-only flag and the number of rows that should be returned.

res holds the response code for the query. The query result will be put into SPI_tuptable. To

access values another SPI function is used. SPI_getbinval accesses the tuptable’s values by

3.5 Nullhandling

With the ability to receive values either as arguments or by queries, we are now at a stage where

we should address the value NULL and it’s status compared to NULL in C.

SQL allows for very easy use of this value. It behaves similarly to Nothing of the Maybe Monad

from Functional Programming Languages. Everything that comes into contact with it becomes

NULL itself. Meaning that computations can produce a result that may not be of an actual value

but one that does not break further computations on it.

In C there is no such luxury. Every error-prone operation that can result in a faulty value has

to be handled such that the behavior of the PL/pgSQL NULL is preserved. That said, having to

handle NULL in C should be of no surprise as most imperative languages have the concept of it

and handling it is vital in these as well.

We saw in the previous section that plan execution requires an array of Null markers and that
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y -- With 𝜈𝑖 being free variables
𝑛𝑎𝑚𝑒 := (𝑞)[𝜈1, … , 𝜈𝑛];

-- ie. in order_kept_waiting where orderkey is free

lis := (SELECT array_agg(l)
FROM lineitem AS l

WHERE l.l_orderkey = $1)[orderkey ];

1
P
la
n
S
et
u
p SPIPlanPtr plan_𝑛𝑎𝑚𝑒 = NULL;

// ...

Datum 𝑓(PG_FUNCTION_ARGS)
{

// ...
int ret;

if ((ret = SPI_connect ()) < 0)

elog(ERROR , "SPI_connect returned %d", ret);

// plan 𝑛𝑎𝑚𝑒
Oid *argtypes_plan_𝑛𝑎𝑚𝑒 = palloc(𝑛 * sizeof(Oid));

argtypes_plan_𝑛𝑎𝑚𝑒[0] = oid(𝜏1); // Oid of type 𝜏1
…
argtypes_plan_𝑛𝑎𝑚𝑒[𝑛 − 1] = oid(𝜏𝑛);

if (plan_𝑛𝑎𝑚𝑒 == NULL)

plan_𝑛𝑎𝑚𝑒 = SPI_prepare_cursor(

"𝑞", 𝑛, argtypes_plan_𝑛𝑎𝑚𝑒, 0);

SPI_keepplan(plan_𝑛𝑎𝑚𝑒);

Datum *values_𝑛𝑎𝑚𝑒 = palloc(𝑛 * sizeof(Datum));

char *NULLs_𝑛𝑎𝑚𝑒 = palloc(𝑛 * sizeof(char));

// ...

}

2
E
xe
c
u
ti
o
n
o
f
P
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n

int res;
bool isNull;
Datum 𝑛𝑎𝑚𝑒;

for (int 𝑖 = 1; 𝑖 <= 𝑛; 𝑖++)
{

values_𝑛𝑎𝑚𝑒[𝑖 − 1] = 𝜈𝑖;
NULLs_𝑛𝑎𝑚𝑒[𝑖 − 1] = (𝜈𝑖 == NULL) ? 'n' : ' ';

}

res = SPI_execute_plan(plan_𝑛𝑎𝑚𝑒, values_𝑛𝑎𝑚𝑒, NULLs_𝑛𝑎𝑚𝑒, true , 1);

if (SPI_processed <= 0) elog(INFO , "No rows processed");

𝑛𝑎𝑚𝑒 = SPI_getbinval(SPI_tuptable ->vals[0],

SPI_tuptable ->tupdesc , 1, &isNull);

if (isNull) 𝑛𝑎𝑚𝑒 = NULL;

Table 3.5: Steps to translate an embedded query 𝑞 with 𝑛 free variables 𝜈𝑖
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other SPI functions such as SPI_getbinval receive a boolean pointer argument named isNull.

Within these functions the value of this flag is set depending if the resulting value that should

be NULL.

3.6 Data Types

If we take a look at the example given at the beginning of this chapter with Listing 3.1 we see

that there are two variables of type lineitem. In this chapter, we want to explore the creation,

composition, decomposition and access of built-in as well as user-defined types.

3.6.0.1 Built-In Data Types

When interacting with the database both in SQL and C we encounter several data types. In SQL

these range from the basic integer overspecialized monetary types [10] to geometric types [11].

Another quite common class of types is Date/Time Types [12]. In C we have several number types

like integers and floating point values in different bitlengths as well as truth values with bool

and char where it is an integer value of one byte in length.

A list of Built-in SQL types with their corresponding C type is found in Table 3.6. Column

”Defined In” shows in which header files each of the respective definitions takes place. To the

readers’ surprise, the Table solely lists char and possibly bool as a C language built-in. While

float4, float8, int16, int32 and int64 are defined in the postgres.h header file they all are aliases

for the known C types float, double, short, int and long.

These seven primitive types are also the only ones we consider for in-C-use. Meaning that

those are the only types that are an exception to the implicit rule to ”Always work with type

Datum”. In these instances, we retrieve the value for cases that inform control flow and are

required for decisions. For the condition in an if statement, we extract the boolean value by

calling DatumGetBool(𝜈). A similar case is made for run variables of loops. How other builtin

types are used is explained in the later Section 3.7 Function Calls.

One point previously skimmed over was the oid(𝜏) placeholder function when preparing the

query plan in Section 3.4. The question is where can the Object Identifier be found or retrieved

from? The answer to this is the System Catalog pg_type [7]. Every piece of information regarding

each type present in the database can be found here.

There are several paths to access the OID through them. When developing it is always an

option to interact with the database. In Listing 3.5 are two example queries that result in the OID

of a type 𝜏. The first example selects and then projects the OID from the catalog table where

the second example calls a builtin function that is then cast to oid.
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SQL Type C Type Defined In

boolean bool postgres.h (maybe compiler built-in)

box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)

character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

float4 (real) float4 postgres.h

float8 (double precision) float8 postgres.h

int2 (smallint) int16 postgres.h

int4 (integer) int32 postgres.h

int8 (bigint) int64 postgres.h

interval Interval* datatype/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

numeric Numeric utils/numeric.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc RegProcedure postgres.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp datatype/timestamp.h

timestamp with time zone TimestampTz datatype/timestamp.h

varchar VarChar* postgres.h

xid TransactionId postgres.h

Table 3.6: Equivalent C Types for Built-in SQL Types (taken from CITE)
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-- From pg_type catalog table
SELECT t.oid
FROM pg_type AS t
WHERE t.typname = '𝜏';

-- Function Call with casting regtype to oid

SELECT to_regtype('𝜏') :: oid;

Listing 3.5: Queries to retrieve OID of type 𝜏 from the Database

While hardcoding these identifiers may be fine when being constrained to types that the

RDBMS is shipped with, the identifiers of User Defined Types are not guaranteed to have the

same OID in every database instance or even after their modification. Hence there is a need to

dynamically get these values. This is done by utilizing the function used in the second previous

example and issueing a Direct Function Call. Those will be thoroughly discussed in Section 3.7.

Oid get_typeoid(char *typname)

{

return DatumGetObjectId(

DirectFunctionCall1(to_regtype , CStringGetDatum(typname)));

}

Listing 3.6: Implementation of function oid

Other pieces of information present in the catalog table are columns designated typlen,

typbyval and typalign. They all give insight in the memory representation of the type. Type by

value (typbyval) is a flag denoting whether the representing Datum is used as a pointer or indeed

stores the value in itself. For the latter the Type length (typlen) is of interest as it stores the

bitlength of a given type. Lastly, types are padded to allow for ease of alignment on disc systems.

Which of four possible alignments is saved in typalign.

For some applications – mainly Arrays (see Section 3.8 for more) – this information is crucial.

To access these fields we again have to know the OID. From there we look up the HeapTuple in

the System Cache that then is converted into a struct that holds the meta information we are

after. For convenient use we defined a struct holding these three values and a helper function.

3.6.0.2 Composite Data Types

Coming back to User Defined Types. There are multiple ways how a new type enters the database.

The most natural for the user should be table-/row types. By writing the CREATE TABLE DDL

statement a new type has been created. An example would be the one used to create the

lineitem table.

CREATE TABLE LINEITEM ( L_ORDERKEY INTEGER NOT NULL ,
L_PARTKEY INTEGER NOT NULL ,
L_SUPPKEY INTEGER NOT NULL ,
L_LINENUMBER INTEGER NOT NULL ,

-- [ omitted 11 lines ]

L_COMMENT VARCHAR (44) NOT NULL);

Listing 3.8: Definition of the lineitem type as a table type definition
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typedef struct {
int elmlen;
bool elmbyval;
char elmalign;

} typeinfo;

typeinfo get_typeinfo(Oid elmtype)

{
HeapTuple tp;
Form_pg_type typtup;

typeinfo ti;

tp = SearchSysCache1(TYPEOID , ObjectIdGetDatum(elmtype));

if (! HeapTupleIsValid(tp))

elog(ERROR , "cache lookup failed for type %u", elmtype);

typtup = (Form_pg_type) GETSTRUCT(tp);

ti.elmlen = typtup ->typlen; // int

ti.elmbyval = typtup ->typbyval; // bool

ti.elmalign = typtup ->typalign; // char

ReleaseSysCache(tp);

return ti;

}

Listing 3.7: Retrieval of typlen, typbyval and typalign using the OID

Projecting a row from it would result in a row type of lineitem for example:

(1,1552,93,1,[...],"egular courts above the")

We find this exact type in the introductory example Listing 3.1.

Another approach to creating a Composite type would be by writing a DDL statement like

the one on the left side of Table 3.7. The right side then represents possible implementations

within the translation. The upper example may be of more use when the 𝜏𝑖 fall in the previously

mentioned seven primitive types, otherwise the motivation to keep values of type Datum prevails.

Having a struct suggests that composite values can directly transform themselves into these.

This is not the case. In Listing 3.9 it is shown that a ExpandedRecordHeader is needed to access

the values that then can be either put in use directly or stored within the struct posing as an

analog to the SQL variant.

𝜏𝑛𝑒𝑤 𝑛𝑎𝑚𝑒𝑛𝑒𝑤;

ExpandedRecordHeader *erh = DatumGetExpandedRecord(𝜈𝑐𝑜𝑚𝑝);
deconstruct_expanded_record(erh);

𝑛𝑎𝑚𝑒.𝑛𝑎𝑚𝑒1 = erh ->dvalues[0];
…
𝑛𝑎𝑚𝑒.𝑛𝑎𝑚𝑒𝑛 = erh ->dvalues[𝑛 − 1];

Listing 3.9: Deconstruction of Composite Types
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SQL C

CREATE TYPE 𝜏𝑛𝑒𝑤 AS (
𝑛𝑎𝑚𝑒1 𝜏1,
…
𝑛𝑎𝑚𝑒𝑛 𝜏𝑛

);

typedef struct {
𝜏1 𝑛𝑎𝑚𝑒1;
…
𝜏𝑛 𝑛𝑎𝑚𝑒𝑛;

} 𝜏𝑛𝑒𝑤;

typedef struct {

Datum 𝑛𝑎𝑚𝑒1, // 𝜏1
…
𝑛𝑎𝑚𝑒𝑛; // 𝜏𝑛

} 𝜏𝑛𝑒𝑤;

Table 3.7: Translation of SQL Composite Types into C Structs

Working with Composite Types not only consists of deconstructing them but also of their

construction namely for UDFs that return them. We achieve this by retrieving the result type

of the function itself by invoking get_call_result_type. This call retrieves the OID and Tuple

Descriptor TupleDesc. In Table 3.8 it is shown that these bits of information are enough to

construct a new Tuple with the desired Composite Return Type 𝜏𝑐𝑜𝑚𝑝. The values 𝜈𝑖 are put into

a Datum Array. Also there it is required to provide an Array with flags whether the corresponding

𝜈𝑖 is NULL. Then one can form the HeapTuple.

3.7 Function Calls

In the previous Section, we introduced different types. But as said there C functions and opera-

tions only work on seven basic types that are native to C themselves. In this Section, we discuss

how functions and operations can be used on more complex data types and structures.

The types already provided by PostgreSQLall come with consumer functions that allow for

interaction with said types as well as producing functions. The most foundational of these two

are 𝜏_out and 𝜏_in. The latter parses a string to create a value 𝜈 of type 𝜏, where 𝜏_out converts

the value 𝜈 to a string representation.

What other functions are available for any type 𝜏 can be looked up in the system catalogs.

The system catalog pg_proc to be exact. Listing 3.10 shows a query that returns every type 𝜏
consuming function. When multiple argument types are known the array in the WHERE clause

gets expanded.

SELECT p.oid , p.proname , p.prorettype :: oid :: regtype ,

(SELECT array_agg(name)

FROM unnest(p.proargtypes :: oid[] :: regtype []) AS _(name)

) AS proargtypes
FROM pg_proc AS p

WHERE ARRAY[to_regtype('𝜏') :: oid] <@ p.proargtypes :: oid[];

Listing 3.10: Query to list all type 𝜏 consumer functions

Similarly, it is possible to list all type 𝜏 returning functions by capturing the prorettype.
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RETURN (𝜈1, …, 𝜈𝑛) :: 𝜏𝑐𝑜𝑚𝑝;

Datum *values_𝜏𝑐𝑜𝑚𝑝
= palloc(𝑛 * sizeof(Datum));

bool *NULLs_𝜏𝑐𝑜𝑚𝑝
= palloc(𝑛 * sizeof(Datum));

// Fill Arrays with values/NULL flags

// for {𝜈𝑖 ∣ 0 < 𝑖 ≤ 𝑛}
values_𝜈𝑐𝑜𝑚𝑝[𝑖 − 1] = 𝜈𝑖;
NULLs_𝜈𝑐𝑜𝑚𝑝[𝑖 − 1] = 𝜈𝑖 == NULL;

Oid oid_𝜏𝑐𝑜𝑚𝑝;
TupleDesc desc;

get_call_result_type(

fcinfo , &oid_𝜏𝑐𝑜𝑚𝑝, &desc);

desc = BlessTupleDesc(desc);

Datum 𝜈𝑐𝑜𝑚𝑝 = HeapTupleGetDatum(

heap_form_tuple(

desc , values_𝜈𝑐𝑜𝑚𝑝, NULLs_𝜈𝑐𝑜𝑚𝑝));

PG_RETURN_DATUM(𝜈𝑐𝑜𝑚𝑝);

Table 3.8: Translation of Construction of Composite Types

SELECT p.oid , p.proname , p.prorettype :: oid :: regtype ,

(SELECT array_agg(name)

FROM unnest(p.proargtypes :: oid[] :: regtype []) AS _(name)

) AS proargtypes
FROM pg_proc AS p

WHERE p.prorettype = to_regtype('𝜏') :: oid;

Listing 3.11: Query to list all type 𝜏 returning functions

Similar to functions a developer might have additional knowledge about the function they are

looking for. Maybe they are not after a function in the first place but rather an operator utilizing

this function. And as this operator has a name the System Catalog pg_operator becomes of

interest. Especially the column oprcode where the function name is found. querying the catalog

where oprname ≡ 𝑜𝑝 can return a lot of entries because of operator overloading.

-- Fine -grained control
SELECT opr.oid , opr.oprname , opr.oprcode , ppr.oprresult ,

opr.oprleft :: oid :: regtype ,
opr.oprright :: oid :: regtype

FROM pg_operator AS opr
WHERE opr.oprname = '𝑜𝑝'

AND opr.oprresult = to_regtype('𝜏𝑟𝑒𝑠𝑢𝑡𝑙') :: oid

AND opr.oprleft = to_regtype('𝜏𝑙 ') :: oid

AND opr.oprright = to_regtype('𝜏𝑟') :: oid;

-- Utilizing the 'to_regoperator ' function
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SELECT opr.oid , opr.oprname , opr.oprcode , ppr.oprresult ,
opr.oprleft :: oid :: regtype ,
opr.oprright :: oid :: regtype

FROM pg_operator AS opr

WHERE opr.oid = to_regoperator('𝑜𝑝(𝜏𝑙,𝜏𝑟)') :: oid;

Listing 3.12: Several approaches on retrieving operators

An example of such operator overloading would be + on the operands date and integer in

Table 3.9. From the operator alone a user is not able to infer the function powering it. The SQL

function call of to_regoperator would be made using the string '+(date,integer)'.

SELECT ('1998 -11 -09' :: date) + 1 AS "Date of Birth";

Date of Birth
---------------
1998 -11 -10

(1 row)

Table 3.9: Overloaded Operator + in SQL

Where the above-mentioned approach to finding suitable functions is based on lookups on

the System Catalogs, those gain their information from the definition of the types and their

function definitions in the source code. Hence a more tedious path to pursue can be searching

the source files for functions that should be used in the translated source code. This path yields

documentation for the functions that may be missing from the official end-user documentation.

Talking about source code. Until now this Section has been about finding out the name or OID

of a function or operation. Yet not its translated call. These functions are accessible through the

same header files as the types themselves. The functions exposed there are bound by the same

version 1 calling conventions as our function is. They are Magic Functions themselves. Therefore

we cannot translate a PL/pgSQL function or operator call into 𝜈𝑟𝑒𝑠 = 𝑓(𝜈1, …, 𝜈𝑛); and call it a

day.

When interacting with a Magic Function we do so by issuing a DirectFunctionCall. The argu-

ments of the function call are the original function we want to call as well as its arguments

as of type Datum. These original 𝑛-ary functions are called with a corresponding 𝑛 + 1-ary
DirectFunctionCall𝑛 or DirectFunctionCallOid𝑛 to be able to hand over both the function (or

OID) as well as its arguments. In Table 3.10 these cases are shown as well as the case that a

function name is overloaded and additional markers, such as the argument types, are needed.

This case also applies for PL/pgSQLUDFs.

Another option would be to set up a query of the likes of SELECT 𝑓(𝜈1, …, 𝜈𝑛); and execute

it as seen in Section 3.4.

3.8 Arrays

Composite Types or Row Types present a way to bundle information. Arrays allow for it as well.

They are a container data structure present in the SQL standard since SQL:1999 [13]. PostgreSQL
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PL/SQL C

𝑓(𝜈1, …, 𝜈𝑛)

// DirectFunctionCall𝑛
Datum 𝜈𝑟𝑒𝑠 = DirectFunctionCall𝑛(𝑓, 𝜈1, …, 𝜈𝑛);

// DirectFunctionCallOid𝑛 - unique name

Oid oid_𝑓 = DatumGetObjectId(

DirectFunctionCall1(to_regproc , CStringGetDatum('𝑓'));

Datum 𝜈𝑟𝑒𝑠 = DirectFunctionCallOid𝑛(oid_𝑓, 𝜈1, …, 𝜈𝑛);

// DirectFunctionCallOid𝑛 - overloaded name

Oid oid_𝑓 = DatumGetObjectId(

DirectFunctionCall1(to_regprocedure ,

CStringGetDatum('𝑓(𝜏1, …, 𝜏𝑛)'));

Datum 𝜈𝑟𝑒𝑠 = DirectFunctionCallOid𝑛(oid_𝑓, 𝜈1, …, 𝜈𝑛);

Table 3.10: Translated state of function calls.

implements a plethora of operations [14] on this type of homogenous collection of values. This

Section should provide several approaches working with PostgreSQL Arrays.

In SQL there are several ways to construct Arrays. The most straightforward is to explicitly

state which values or identifiers are put into the Array.

ARRAY[𝜈1,…,𝜈𝑛]

Where the Array type can not be inferred from the context a user may explicitly annotate or

cast the array to an explicit type _𝜏.

ARRAY[𝜈1,…,𝜈𝑛] :: 𝜏[] or ARRAY[𝜈1,…,𝜈𝑛] :: _𝜏

Other than that a query may return an Array or it can be constructed by Array operations. As all

Array Types have overlapping functionality like the aforementioned plethora of operations there

exists a more generalized type called anyarray. This allows for functions that are not dependent

on the type of element stored in the Array to be implemented in a more abstract approach.

Besides this more general type Arrays are more seen as an extension to existing types. Every

Type has a corresponding Array Type. The OIDs of said Array Types are the typarray column in

the System Catalog pg_type. Also these OIDs appear as their own Type in pg_type. There the

column typname presents itself in the style of _𝜏𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.

This explains the concept of these Arrays. The next step would be to work with them in C.

Starting one could assume that the PostgreSQL Array is a C Array in disguise or a C struct with a

C Array and more meta information. That would be false. The PostgreSQL Array internally is of

ArrayType. A struct with fields for the length, dimensions, element type and data offset.
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ArrayType at =

DatumGetArrayType(𝜈𝑖𝑛𝑝𝑢𝑡);

Datum *𝜈𝑜𝑢𝑡𝑝𝑢𝑡;
bool *𝜈𝑜𝑢𝑡𝑝𝑢𝑡_NULLs;
int 𝜈𝑜𝑢𝑡𝑝𝑢𝑡_cardinality;

int16 elmlen;
bool elmbyval;
char elmalign;

get_typlenbyvalalign(
𝜈𝑖𝑛𝑝𝑢𝑡->elemtype ,

&elmlen ,
&elmbyval ,

&elmalign);

deconstruct_array(
𝜈𝑖𝑛𝑝𝑢𝑡,
𝜈𝑖𝑛𝑝𝑢𝑡->elemtype ,
elmlen ,
elmbyval ,
elmalign ,

&𝜈𝑜𝑢𝑡𝑝𝑢𝑡,
&𝜈𝑜𝑢𝑡𝑝𝑢𝑡_NULLs ,
&𝜈𝑜𝑢𝑡𝑝𝑢𝑡_cardinality);

int16 elmlen;
bool elmbyval;
char elmalign;

get_typlenbyvalalign(
𝜏𝑒𝑙𝑒𝑚𝑒𝑛𝑡,

&elmlen ,
&elmbyval ,

&elmalign);

Datum 𝜈𝑜𝑢𝑡𝑝𝑢𝑡 =

PointerGetDatum(

construct_array(
𝜈𝑖𝑛𝑝𝑢𝑡𝑠,
𝜈𝑖𝑛𝑝𝑢𝑡𝑠_cardinality ,
𝜏𝑒𝑙𝑒𝑚𝑒𝑛𝑡,
elmlen ,
elmbyval ,

elmalign));

Deconstruction Construction

Table 3.11: PostgreSQL Array deconstruction to and construction from C

3.8.1 PostgreSQL Array→ C Array→ PostgreSQL Array

A first approach knowing that the PostgreSQL Array is not a ”normal” Array could be to find a

way to convert it into a C Array working on it and then converting it back into a PostgreSQL Array.

The procedure deconstruct_array does exactly what its name suggests. The left Listing in Table

3.11 shows that given the input ArrayType and element information a Datum Array can be filled.

Including a corresponding Nulls Array as well the length of both Arrays.

The inverse operation can be seen on the right side of said table. Given a Datum Array 𝜈𝑖𝑛𝑝𝑢𝑡𝑠, its
elements OID and cardinality can again be used to retrieve element information and construct

a new ArrayType.

This approach seems sensible for small Arrays but regarding typical SQL operations such as

concatination and pre- or appending are not as comfortable as in SQL. Here the power lies with

DirectFunctionCalls as seen in Section 3.7. For that the Arrays have to be present as Datums.

When searching for compatible functions use 𝜏 ≡ anycompatiblearray in Listings 3.10 and 3.11.
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4
Problems

On the path of implementing this work, we encountered a few topics that may seem trivial

afterward but still presented themselves as sufficient road blocks or became of surprising signif-

icance. Take these as a lesson for ones own start of developing C language PostgreSQL functions

or extension.

4.1 Interaction with Extension Creation

Extensions are applied to a database with the CREATE EXTENSION DDL statement. This is similar to

other DDL statements that create tables, types or indices. Where those are direct definitions of

such, extensions are collections of a multitude of these statements. Having multiple definitions

round-up like this occludes the complexity of the extension.

The UDFs placed there may be dynamically loaded – inferring OIDs and other information at

runtime – but their own argument or result types fall into the same type system as everything

else. Modifying a dependent type with CREATE OR REPLACE or DROP …; CREATE …; affects these

UDFs.

To relieve the extension of its dependencies move those into the extensions as well.

4.2 PostgreSQL Architecture and Source Code

PostgreSQL documents the user-side functionality very well. Also, introductory documentation

for developing extensions is provided. [8] This paradigm of easy onboarding shifts a little bit

when investigating source functionality. There is no overview of the architecture other than the

source code itself.

The Datum-only approach allows for slight ease of use. To identify constructs like array_iter

or ExpandedRecordHeader that are crucial for their respective cause can not be found by querying

the System Catalogs but rather have to be found in the source code.

To scour it by opening all files and searching for similar usage is one option. Another is using

the doxygen1 platform hosted by the organization behind PostgreSQL. It acts as a reference with

the latest source version. There one can follow types and functions to their definitions and see

where they are referenced and used.

1https://doxygen.postgresql.org/index.html

25



4.3 Different Release Versions

Different PostgreSQL release versions have a different code base. So far so obvious. This results in

the C extension being compatible with the version it has been compiled for. Compared to ”normal”

PL/SQL language extensions or scripts it is therefore bound to a specific database version. A

database version upgrade would not affect the SQL scripts. The PostgreSQL functionality used

in C language functions might be removed, renamed or replaced entirely and could not work in

a different database version.

Coinciding with these changes the performance of the extension (or all queries for that matter)

might be impacted. Where previously one expected a certain behavior from the internals, there

could have been a more performant replacement parallel to the expected piece of code.

4.4 Interfacing with Arrays

In the Section ’A Critique of the POSTGRES Data Model’ of the 1990 Paper ’The implementation

of POSTGRES’ by [15] they said that they felt making mistakes when implementing arrays. They

even conclude that ”In retrospect, we should have included general support for arrays or no

support at all” [15].

Since then there were both variable- and fixed-length arrays [16] where the initial SQL speci-

fication introducing arrays (SQL:1999 [13] ) nine years later solely expected fixed-length arrays.

Variable length arrays were later introduced into the specification in SQL:2003. During this evolu-

tion of standards, the POSTGRES Project evolved itself into PostgreSQL. Since then the concepts

of having both types of arrays did not change. This results in a confusing number of functions

related to arrays.

Additionally, arrays can be embedded into each other, Multidimensionality does not pose

a problem per sé but as the internal representation keeps them one dimensional and adds

another struct type wrapping them leading to more functions involved in working with them.

Together with arrays being a universal concept across different programming languages but

being slightly different in SQL and more different in the backend can end in a slight disconnect.
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5
Meassurements

We translated sixteen PL/pgSQL UDFs applying the rules described in Chapter 3. These

manually-translated UDFs were benchmarked in PostgreSQL 14.2 on a 64 Bit Linux platform

comprised of 2× AMD EPYC® 7402 CPUs at 2.8GHz and 2 TB of RAM.

The original UDFs were implementations of several TPC-h benchmark queries [17] in PL/pgSQL.

The C translations of these UDFs are therefore also viable implementations of these queries.

The background of the TPC-h benchmark is to provide real-world database schemata as well as

queries applicable to them. The sizes of the databases behind them also are sized according to

a Scaling Factor.

Additionally to these real-world examples, there are some academic use cases like a bounding

box, 𝑛-body simulation or marching square algorithm.

These 16 different UDFs are of different complexity. The complexity consists of the number

of embedded queries (|𝑄𝑖|), the number of loop constructs (LC) and their respective embedding

into each other as well as their Cyclic Complexity (CC). They also work on different types, from

built-ins to composites to user-defined composite types. Those are not only arguments or

return types but internal variables as well. Table 5.1 presents these complexity measures and

the performance of the 16 C language UDFs compared to the original PL/pgSQL variants.

Queries that show a slightly better improvement than the other general improvement like

late or service are of simpler complexity. All embedded queries are executed before entering

decisions or loops. The types used in it are also compatible with C primitives leading to a nigh

perfect embedding of the control flow within C.

Where the previous TPC-H examples had improved runtime more complex UDFs like bbox
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Figure 5.1: Runtime comparison for the different scaling factors (001•, 005•, 01•, 05•, 1•)
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UDF
Return
Type

|𝑄𝑖| LC CC
Runtime
(speedup)

bbox detect bounding box of a 2D object box 2 1 5 111.04% (0.90×)
force 𝑛-body simulation (Barnes-Hut quad tree) point 3 1 5 190.53% (0.52×)

global does a TPC-H order ship intercontinental? boolean 1 1 3 90.23% (1.11×)
items count items in hierarchy (adapted from [18]) int 2 1 2 19.75% (5.06×)
late find delayed orders (transcribed TPC-H Q 21) boolean 1 1 4 77.24% (1.29×)

march track border of 2D object (Marching Squares) point[] 2 1 5 110.26% (0.91×)
march-tvf track border of 2D object (Marching Squares) point[] 2 1 5 102.65% (0.97×)

margin buy/sell TPC-H orders to maximize margin row 3 1 5 98.62% (1.01×)
markov Markov-chain based robot control int 3 1 3 94.48% (1.06×)

savings optimize supply chain of a TPC-H order row 6 1 4 83.72% (1.19×)
sched schedule production of TPC-H lineitems row array 5 2 6 99.98% (1.00×)

service determine service level (taken from [19]) text 1 0 3 86.43% (1.16×)
ship customer’s preferred shipping mode text 3 0 3 95.58% (1.05×)

sight compute polygon seen by point light source polygon 3 2 3 97.86% (1.02×)
visible derive visibility in a 3D hilly landscape boolean 2 1 3 96.67% (1.03×)

LC ≡ Loop Constructs, CC ≡ Cyclic Complexity

Table 5.1: A collection of PL/SQL UDFs with compared to a C implementation said UDFs
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Figure 5.2: Runtime for context switches varied (lower/lighter is better).

(Figure 5.2a did not show such positive development. As the function works on composite

and custom data types a na”ive implementation did not suffice. We see the problem in the

decomposition of said composite types. Having to deconstruct and reassign values seems to be

the culprit.

Other academic examples like visible (Figure 5.2b) seem to have to gain slightly from a C

language implementation.

28 Chapter 5 Meassurements



6
Conclusion and Related Work

6.1 Conclusion

In this work, we attempted to translate several UDFs from their PL/pgSQL definition into an C

language analogue. To achieve this part we inferred several rules to translate domain-specific

constructs into C. Coinciding with the need to introduce PostgreSQL specific types, constructs

and conventions something is lost from the simple PL/pgSQL implementation. This something is

the clarity of the written code. The boilerplate code needed to achieve a successful translation

using the same constructs the PL/pgSQL interpretation would use obscures the control flow and

intend the original query communicates clearly.

Besides the aspect of translating the benchmark UDFs we ran them against their original

variants. The experiment identified a minimal to no overhead imposed by PostgreSQL’s PL/pgSQL

interpreter.

6.2 Future and Related Work

This work only touches the functionality provided by PostgreSQL. Future work might want to take a

deeper dive into PostgreSQL’s architecture and prove a more concise or efficient implementation.

In this work, we encountered Memory Contexts but did not use them to their full extent. The

same is true for Arrays. It would be interesting whether a more well-rounded solution has an

edge compared to the original versions.

Also we only have taken a look at PostgreSQL. It could be of interest whether other Database

Management Systems handle their PL/SQL implementation differently. Better or worse. Such

systems could be direct competitors or newer systems like DuckDB.

Besides the works [1], [2] and [3] cited in the Introduction there is the work [20] on the

ByePy Compiler that follows the same approach. The difference being the host language having

embedded queries is Python. Based upon the rule set identified in our work one could attempt

to compile PL/pgSQL directly into a C extension and therefore automating what has been done

here by hand.
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