
UNIVERSITY OF TÜBINGEN

BACHELOR THESIS

Functional Universe: A Gaming Client in
Racket for First-Year Students

Author:
Louisa LAMBRECHT

Reviewer:
Prof. Dr. Torsten GRUST

Supervisor:
Daniel O’Grady

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Database Systems Research Group
Department of Computer Science

September 24, 2018

https://www.uni-tuebingen.de/en.html
https://de.linkedin.com/in/louisa-lambrecht-b96396142
https://db.inf.uni-tuebingen.de/team/TorstenGrust.html 
https://db.inf.uni-tuebingen.de/team/DanielO-Grady.html 
https://db.inf.uni-tuebingen.de/
http://www.uni-tuebingen.de/en/faculties/faculty-of-science/departments/computer-science/department.html




iii

Declaration of Authorship
I, Louisa LAMBRECHT, declare that this thesis titled, “Functional Universe: A Gam-
ing Client in Racket for First-Year Students” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:





v

UNIVERSITY OF TÜBINGEN

Abstract

Faculty of Science

Department of Computer Science

Bachelor of Science

Functional Universe: A Gaming Client in Racket for First-Year Students

by Louisa LAMBRECHT

In the era of technology smartphones and computers play a significant role in daily
life. More and more computer scientists are requested to fill the need of advanc-
ing technology. For many students games on the phone or computer are a part of
their leisure time. Therefore games in general but multi-player games especially
are an opportunity of creating strong motivation among first-year students to learn
programming and design concepts. This thesis explores the possibility of provid-
ing a game specific frame geared to the concept of big-bang. This frame allows
the students to program a simple Racket client without being distracted by data-
interchange formats or transmission protocols. A model is presented to develop an
interlayer corresponding to the game. This interlayer provides an interface to enable
the students to program their own game client suitable for their skills. Specifically
the messages communicated by the server are preprocessed and trigger game spe-
cific events to not overburden first-year students with data-interchange formats in
addition to distributed programming. The model also indicates an abstraction to
easily make use of different games and servers.

HTTPS://WWW.UNI-TUEBINGEN.DE/EN.HTML
http://www.uni-tuebingen.de/en/faculties/faculty-of-science/faculty.html
http://www.uni-tuebingen.de/en/faculties/faculty-of-science/departments/computer-science/department.html




vii

Contents

Declaration of Authorship iii

Abstract v

1 Introduction 1
1.1 Pedagogical Value of Multi-Player Games . . . . . . . . . . . . . . . . . 1
1.2 Why Racket? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Racket - A Lisp-based Language . . . . . . . . . . . . . . . . . . 2
1.2.2 Why Racket? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Aim of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Multi-Player Games in Racket 5
2.1 The Universe Teachpack . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Interactive Games . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 An Interactive Example . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A Universe Represents a Server . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 The Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Role of the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 The Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.5 A Distributed Example . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 How About a Different Server? . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 The Dragonland Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Description of the Game Dragonland . . . . . . . . . . . . . . . . 12
2.5.2 Role of the Dragonland Server . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Communication of the Dragonland Server . . . . . . . . . . . . . 13

3 Development of a Client 15
3.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Connecting to the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Steps of Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Parsing JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Analysing JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Processing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Workflow of the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Abstraction to a General Model 21
4.1 Turning the Idea into a Model . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Model of the Communication . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Model of the Logical Units . . . . . . . . . . . . . . . . . . . . . 22

4.2 Student Client: The Template . . . . . . . . . . . . . . . . . . . . . . . . 23



viii

4.3 JSON Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Documentation of the Functions . . . . . . . . . . . . . . . . . . 25

4.4 Game Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Testing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5.1 The Client from a Student’s Point of View . . . . . . . . . . . . . 27

5 Discussion and Conclusion 31
5.1 The Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Discussion: Changing the Game . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 35



ix

List of Figures

2.1 Workflow of the worlds in a simulation . . . . . . . . . . . . . . . . . . 6
2.2 Workflow of the worlds in an interactive game . . . . . . . . . . . . . . 7
2.3 Communication between a Racket server and a Racket client . . . . . . 10
2.4 Screenshot: a simple game where two players can move around . . . . 12

3.1 Workflow of the client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Communication between server, game client and student client . . . . 21
4.2 Model of the logical units . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Screenshot: the implementation of a Dragonland client in Racket . . . . 28

5.1 Model of the logical units with interchangeable parts . . . . . . . . . . 33





xi

List of Listings

2.1 A typical big-bang function call using mouse, key and tick events. . . 7
2.2 on-key: changing the position according to the key pressed . . . . . . . 8
2.3 to-draw: rendering the pawn at its correct position . . . . . . . . . . . . 8
2.4 big-bang: a pawn moves on an empty canvas . . . . . . . . . . . . . . . 9
2.5 A typical universe function call with connection, message and tick

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 big-bang as a client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 on-new: this server accepts only two clients . . . . . . . . . . . . . . . . 11
2.8 on-msg: passing through the messages of the clients . . . . . . . . . . . 11
2.9 universe: the server connects two players . . . . . . . . . . . . . . . . . 11
2.10 An example of a JSON object sent by the Dragonland server . . . . . . . 13
3.1 Simple TCP client to test the connection . . . . . . . . . . . . . . . . . . 16
3.2 Source code of the universe teachpack: establishing the connection . . . 16
3.3 Java method to send the acknowledging message . . . . . . . . . . . . 17
3.4 The simplest big-bang client . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 The ideal set-up of a game-specific big-bang function . . . . . . . . . . 23
4.2 Optional keyword arguments offer high resemblance to the ideal . . . 24
4.3 The general set-up of the game client . . . . . . . . . . . . . . . . . . . . 26
4.4 Analysing the server input and triggering events . . . . . . . . . . . . . 27





xiii

List of Abbreviations

HtDP How to Design Programs
DMdA Die Macht der Abstraktion
GUI Graphical User Interface
TCP Transmission Control Protocol
JSON JavaScript Object Notation





1

Chapter 1

Introduction

Daily life cannot be imagined without computers, smartphones or other technologi-
cal devices any more. But developing these technologies needs good programmers.
The key to becoming a good programmer is good education. Good education does
not only become apparent at its (formal) end when a student leaves university with
a bachelor or master degree. Good education is visible during the process by the
students’ motivation to visit lectures and exercise classes and to invest time on their
own. A vague interest in a general topic does not carry a student through university
studies. It takes initiative, willingness to learn and hard work that can be triggered
and supported by challenging motivation. Motivation is a key to learning success.

1.1 Pedagogical Value of Multi-Player Games

Triggering motivation is said easily but not always done so. How to motivate stu-
dents to engage with abstract concepts of programming? A real reference point is
always a good starting point; something everybody knows and can connect to. Com-
puter games pose such a point. Nowadays every student will have had some contact
with video games: either with a game console, a gaming app on the smartphone or
a good (old) computer game like Tetris or DotA.1

The best way to encourage students to learn is to use their leisure activities as a refer-
ence point. The combination of gaming (entertainment) and the possibility of team-
mates from all over the world (networking) form a unique motivation for students:
not only learning with games but also learning through games (by programming
games themselves).

A beginners course in computer science ought to be exciting. It is the corner stone of
the course itself and maybe the rest of the studies. Several studies2 showed that pro-
gramming games is a successfull tool to teach students program design principles
and create exciting motivation[Mor18]. Therefore programming multi-player games
in teaching can be considered as having high pedagogical value.

1 see https://tetris.com/ and Defense of the Ancients
2 Courtney et al. (2003) [CNP03]; Achten (2008) [Ach08]; Felleisen et al. (2009) [Fel+09]; Morazán

(2011) [Mor11]; Morazán (2015) [Mor15]

https://tetris.com/
http://www.dota2.com/


2 Chapter 1. Introduction

1.2 Why Racket?

As multi-player games are a great opportunity to encourage students to learn, it is
beneficial to use them in programming education. But why should that be done
in combination with Racket? What makes Racket the programming language for
distributed game programming?

1.2.1 Racket - A Lisp-based Language

Racket belongs to the Lisp family.3 Significant characteristics of Lisp are the lambda
calculus by Alonzo Church, the concept of everything being a function, and list pro-
cessing [Fel+13].

In the late 1950s John McCarthy and his researchers developed Lisp. Almost 15 years
later in 1972 Guy Steele and Gerald Sussman studied the ideas of Alonzo Church
and also object-oriented programming. They concluded that Church’s programming
language should be extended with assignment statements and jumps in control flow
[Fel+13]. They implemented this new language in Lisp and called it Scheme. Soon
after Scheme became popular and many experimented with the language. So did a
research group at Rice University in Houston, Texas in the 1990s.

Matthias Felleisen, Robby Findler, Matthew Flatt and Shriram Krishnamurthi
wanted to develop a language that would not overburden students who just be-
gan to study programming [Fel+15]. They aimed to create a simple programming
language with a supporting programming environment for beginners. Thus, a new
version of Scheme was developed and refined repeatedly until it was renamed to
Racket in June 2010 to emphasize the differences between Scheme and this by then
fully-fledged programming language.4

1.2.2 Why Racket?

The reason why Racket was created in the first place is the reason for using Racket
in distributed game programming. Matthias Felleisen, Robby Findler, Matthew Flatt
and Shriram Krishnamurthi et al. explicitly state in their Racket Manifesto that their
intention for Racket was to create a teaching language for beginners [Fel+15]. Fur-
ther they expressed their wishes in Realm of Racket that they wanted to give beginners
the chance to learn programming without simple exercises, such as calculating the
first 100 primes, but to trigger excitement among the students that programming can
be fun [Fel+13].

Racket is not only a programming language with simple keywords that are easy
to understand for beginners. It also comes with a programming environment that
is very supportive and not overloaded for students who have never programmed
before. This environment offers several Lisp dialects and allows the inclusion of
different teachpacks to learn step by step.

The universe teachpack by Matthias Felleisen contains all the functions needed for
programming multi-player games [Fel14]. Furthermore it offers other simpler ani-
mation tools to provide a smooth transition from easy animations to more complex

3 see http://docs.racket-lang.org/guide/dialects.html
4 see http://racket-lang.org/new-name.html

http://docs.racket-lang.org/guide/dialects.html
http://racket-lang.org/new-name.html


1.3. Aim of this Thesis 3

games and finally to distributed games. The extensive documentation for Racket
and the teachpacks is a secure guide that accompanies the students on their journey
to become good programmers.

1.3 Aim of this Thesis

The aim of this thesis is to explore the possibility of using Racket multi-player games
in first-year teaching. More specifically the potential of connecting a big-bang client
with a Java server is examined. To make the task of programming a client suitable
for first-year students an interlayer should preprocess incoming data. This interlayer
should provide an interface to a small part of the client such that the students would
not have to care about understanding JSON data or the details of network protocols.
The messages from the server should be analyzed and trigger game-specific events
similar to the functioning of the big-bang clauses. In the end a template should indi-
cate the use of the interface and provide a frame for the students to easily implement
their own game client.

The code described in this thesis can be found in the internal git repository
“Info1Universe” of the chair of database systems.





5

Chapter 2

Multi-Player Games in Racket

As mentioned before Racket is a teaching language and since multi-player games
have proven to be very encouraging for students, Racket also offers some useful
functions to implement your own game. The universe teachpack provides power-
ful animation tools and simple functions to design a game. It is used in combi-
nation with the image teachpack for graphical user interface (GUI) programming.
Both teachpacks were developed in the course of How to Design Programs1 (HtDP),
a textbook that introduces systematic design of computer programs in Scheme. The
universe teachpack is the basis for this thesis. Thus, the following chapter will give a
brief introduction into the concept of the universe teachpack and its implementation
with short examples.

2.1 The Universe Teachpack

The concept underlying this teachpack is an analogy of our universe. Each computer
or program is represented as a world. A simulation or a normal interactive game
that runs on exactly one computer is a world without contact to other worlds. Only
the universe (a server) can connect the worlds and provide the facility of interacting
with each other.

To guide the students slowly into the concept of the universe teachpack, user interac-
tion and GUI programming, there are some straightforward functions to start with
before rushing into multi-player game programming. Simulations without interac-
tion are a good opportunity to introduce the universe teachpack and the GUI func-
tions of the image teachpack. Interactive games like Breakout2 form a good follow-up,
as they introduce the function that is also needed for distributed game programming
and broaden the knowledge of GUI programming. After programming an interac-
tive game the students will have understood the concept of the universe analogy
sufficiently to take a look into the design of multi-player games in Racket.

2.2 Worlds

This section describes what kind of worlds exist in the universe teachpack and how
to create them. A world consists of at least two features: a world state that represents

1 see Official Website and Dokumentation
2 see https://en.wikipedia.org/wiki/Breakout_(video_game)

https://htdp.org/
https://docs.racket-lang.org/htdp-langs/index.html
https://en.wikipedia.org/wiki/Breakout_(video_game)


6 Chapter 2. Multi-Player Games in Racket

the world’s set-up and a rendering function that produces an image to display the
world.

2.2.1 Simulations

A simulation is a simple world whose state is only marked by a number. This num-
ber is increased by every clock tick. Thus, the world constantly changes. Every
change of the world state invokes the rendering function. It produces only a sin-
gle scene but the world changes with every clock tick, 28 frames per second form a
simulation (see figure 2.1).

FIGURE 2.1: Workflow of the worlds in a simulation: The world state
of a simulation changes on every clock tick. The state is an increasing
number. Every change of the world invokes the rendering function

that creates a scene out of the world state.

Such simulations can be created by the animate tool that takes a single function as
an argument. This function is the rendering function that has to create a scene out of
a number (the world state). A first result could be a person moving from one edge
to the other or a UFO gliding down from the top of the window.

2.2.2 Interactive Games

Simulations are entertaining to watch but lack an activity. Interaction is a new aspect
that can transform a simulation into a game. This section describes how interaction
is managed by different events.

Interactive games are event based. Apart from the clock tick other events such as a
mouse click or a key stroke can occur. The events belong to clauses. A clause accepts
a function and sometimes other parameters as well that handle the corresponding
event. For example the on-tick clause that was integrated in animate calls on tock
whenever the event of a clock tick takes place.

Every event may change the world state and therefore the visualization of the game.
These new possibilities of changing the world state yield in the necessity of a more
flexible world state that is able to contain complex information. Hence the world
state can be basically anything: a number, a list, a structure. That offers the potential
of elaborate GUI programming since the rendering function now has access to com-
plex information to turn into a scene. All these features are combined in a function
called big-bang.



2.2. Worlds 7

Racket1 (big-bang ws
2 (to-draw render)
3 (on-tick tock)
4 (on-mouse click)
5 (on-key react))

LISTING 2.1: A typical big-bang function call using mouse, key and
tick events.

The big-bang function offers many clauses and specifications of these clauses. The
four most used clauses - though not necessarily in one program - are displayed in
listing 2.1. But these four are most likely to be used - though not necessarily in one
program. The rendering clause and the on-tick clause are integrated in animate.
All clauses apart from the rendering clause to-draw are optional. The functions that
pose the arguments of the clauses have the world state as a given argument and
as their outcome. That results in a similar workflow to that of a simulation (see
figures 2.1 and 2.2 for comparison).

FIGURE 2.2: Workflow of the worlds in an interactive game: Not only
clock tick events can change the world state. There are also mouse
clicks and key strokes. The world state can be a more complex struc-

ture than a number. Still every world state is rendered to a scene.

2.2.3 An Interactive Example

The following example demonstrates the use of the introduced big-bang function.
A simple but interactive example (as a preparation for the game that is used in this
thesis) could be a pawn moving on a canvas. The world state represents the position
of the pawn. The player can change that position with the arrow keys.

The position is stored in a mutable prefab struct. The prefab feature will be of im-
portance when transforming the example into a distributed game. The initial world
state using the posn struct could be (posn 100 100). The react function updates
the position according to the key pressed as presented in listing 2.2.

Whenever the on-key event occurs with the arrow keys the world state changes.
That invokes the rendering function that has to plot the game. Listing 2.3 shows the
rendering function that creates a scene by placing the icon of the pawn onto a panel.

In the end the call on big-bang that can be seen in listing 2.4 connects these functions
to a simple interactive program. Though the working of the game is never revealed
in that function but in the handling of the events.



8 Chapter 2. Multi-Player Games in Racket

Racket1 (struct posn (x y) #:mutable #:prefab)
2

3 (define (react ws key)
4 (cond [(key=? key "up") (set-posn-y! ws (- (posn-y ws) 5)) ws]
5 [(key=? key "down") (set-posn-y! ws (+ (posn-y ws) 5)) ws]
6 [(key=? key "right") (set-posn-x! ws (+ (posn-x ws) 5)) ws]
7 [(key=? key "left") (set-posn-x! ws (- (posn-x ws) 5)) ws]
8 [else ws]))

LISTING 2.2: on-key: changing the position according to the key
pressed

Racket1 (define (render ws)
2 (place-image pawn1 (posn-x ws) (posn-y ws)
3 (empty-scene 300 300)))

LISTING 2.3: to-draw: rendering the pawn at its correct position

Even though this interactive example is very easy, it is possible to create complex
programs with big-bang. If a game like Breakout is chosen that resembles the stu-
dents’ experience with professional games, they have a reference point that can mo-
tivate them to spend time and effort on it.

2.3 A Universe Represents a Server

The universe teachpack provides everything needed for creating distributed multi-
player games. This section presents the tools for creating a universe server, a
big-bang client and their communication.

A distributed game usually consists of a server that provides the game and forms the
point of intersection. On the other side there are clients. A client accesses the server
and thereby takes part in the game. The universe analogy presents the server as the
universe and the clients as worlds that are part of the universe. Since a big-bang
program creates a world, it acts as a client in distributed games.

2.3.1 The Server

The universe function works similar to big-bang. A universe state represents the
current status of the universe and clauses handle the different events that can occur.
The most common events are a new connection with a world (on-new clause) and
receiving messages from a world (on-msg clause). Like in big-bang, event handling
functions consume the state and the new information - e.g. the identity of a new
client that first connects - as arguments. In addition there is an extra clause to specify
the port that the server listens on. Listing 2.5 shows the connection of the events in
the universe function.



2.3. A Universe Represents a Server 9

Racket1 (big-bang (posn 100 100)
2 (to-draw render)
3 (on-key react))

LISTING 2.4: big-bang: a pawn moves on an empty canvas

Racket1 (universe state
2 (on-new new-expr)
3 (on-msg msg-expr)
4 (on-tick tick-expr)
5 (port port-expr))

LISTING 2.5: A typical universe function call with connection, mes-
sage and tick events

2.3.2 Role of the Server

The server can engage in different roles:

• it can simply pass through all messages coming in

• the server allows only send-listen-send so that every world can send a message
and before sending again has to wait for an answer

• the server can act as an administrator that controls everything and keeps track
that the clients only make valid moves.

If the server implements a game where the clients have to follow some rules, the
server will need to make sure that nobody is trying to manipulate the game since
every student can implement his/her own client. Thus, the server has to act as an
administrator to enforce the logic of the game.

If the server offers the facility of e.g. a chatroom it only has to pass through and
broadcast the messages to all other clients. But whatever role the server takes, it
does not change the set-up of the universe function.

2.3.3 The Client

Since big-bang acts as a client in a distributed game, some additional events are
needed. The set of clauses introduced before is kept and expanded with three other
clauses needed for building a connection: register, port and on-receive. They are
used to define the IP, port to connect to and how to process incoming server mes-
sages (see listing 2.6).

2.3.4 Communication

Enabling communication between the server and a client does not require a lot of
changes in the big-bang client. Instead of reacting to an event with a new world
or universe state, functions can also return a combination of a (new) state and a
message. clients can send a “package” with a world state and a message while the
server works with bundles containing the universe state, messages to clients and



10 Chapter 2. Multi-Player Games in Racket

Racket1 (big-bang ws
2 (to-draw render)
3 (on-key react)
4 ...
5 (on-receive listen)
6 (register IP)
7 (port PORT-NUM))

LISTING 2.6: big-bang as a client

a list of clients which are to be removed from the universe. Figure 2.3 shows this
communication graphically.

The messages are sent via TCP therefore only so called S-expressions can be sent.
S-expressions are basic data like strings, numbers etc. and lists of S-expressions or
prefab structs of S-expressions. Thus, the posn struct needs the prefab feature so that
it can be sent to the server.

FIGURE 2.3: Communication between a Racket server and a Racket
client: The big-bang client returns a package with a world state and
a message. The world state replaces the current world state of the
big-bang program. The message is sent to the server. The universe
server creates bundles with a new universe state, messages to the
clients and a list of clients that are to be disconnected from the server.

2.3.5 A Distributed Example

Extending the example from before will demonstrate a universe server and the use
of big-bang as a client. The server will implement the facility that two clients can
connect and see each other moving.

To use the big-bang example from before the program has to be changed slightly.
The world state has to be adjusted to save not only the player’s own position but also
the other’s, e.g. in a list. Furthermore whenever a player changes his/her position,
not only the world state has to adapt accordingly but the position needs to be sent to
the server. That is done by sending a package consisting of the world state and the
new position as a message: (make-package modified-ws new-position). The client
also needs to listen when the server broadcasts the messages of the other player and



2.3. A Universe Represents a Server 11

update this position in the world state. In addition the rendering function must be
able to display more than just the own position.

The Exemplary Server

The server only passes through the positions of the other client. Therefore the state
of the universe is represented by a list of the current clients. In this case the server
only accepts two clients to keep it simple. Every new connection either adds the
client to the list or disconnects the world from the universe if two clients are already
connected (see listing 2.7).

Racket1 (define (new-expr us client)
2 (if (> (length us) 1)
3 ; disconnect if more than two players
4 (make-bundle us '() (list client))
5 ; add new player if not
6 (cons client us)))

LISTING 2.7: on-new: this server accepts only two clients

The data representation of a client in a universe program is an iworld. Since iworlds
are only a depiction of a client and not the client itself, iworlds don’t have a con-
structor. However, most of the other functions available for structures can be found
as well, e.g. iworld=? is used as a comparison operator. In listing 2.8 the server
forwards the received message to the other party by creating a bundle of the same
universe state, a mail with the new position and an empty list because no clients are
to be disconnected.

Racket1 ; forward position to the correct client
2 (define (msg-expr us from msg)
3 (if (and (= (length us) 2) (iworld=? from (first us)))
4 (make-bundle us (list (make-mail (second us) msg)) '())
5 (make-bundle us (list (make-mail (first us) msg)) '())))

LISTING 2.8: on-msg: passing through the messages of the clients

This is basically what is needed for this simple universe. The call on universe is
composed of these two functions and the port (see listing 2.9). The result of these
few lines of code can be seen in figure 2.4. The code for the whole example can be
found in the Universe folder in the git repository.

Racket1 (universe empty
2 (on-new new-expr)
3 (on-msg msg-expr)
4 (port 1234))

LISTING 2.9: universe: the server connects two players



12 Chapter 2. Multi-Player Games in Racket

FIGURE 2.4: Screenshot: 60 lines of code can create a simple game
where two players can move their pawns

2.4 How About a Different Server?

The sections above were an impression of the realization of multi-player games in
Racket. But Racket may not always be the first choice of language to implement a
server. One of the tasks for this thesis was to research the possibility of connect-
ing big-bang with a non-Racket server; in this case a Java server. The Java server
and big-bang make use of the Transmission Control Protocol (TCP) that allows lan-
guage and platform independent communication and therefore should enable a sta-
ble connection. The following section gives a full description of the server and the
implemented game.

2.5 The Dragonland Server

The server that was used for this work implements a game that was originally in-
vented by Roland Mühlenbernd3 to use it for teaching. For the sake of this thesis it
was called Dragonland. The implementation in Java4 was done by Daniel O’Grady5.

2.5.1 Description of the Game Dragonland

Dragonland has a grid structure with different fields. The players can move their
pawns on the board. The fields represent various types of terrain e.g. water, forest
or paths. Some fields can be walked on some cannot. Dragonland is bordered with
walls. In some parts of the forest the players can hunt. Now and then a dragon
leaves its hiding place and enters the game.

Whenever two players meet they can decide to interact and test their fighting skills
in a minigame. There are three minigames available: Skirmish, Staghunt and Drag-
onhunt. All of them belong to the field of game theory similar to rock, paper, scissors.

3 see https://www.muehlenbernd.net/
4 see https://github.com/ogrady/inf3project
5 see https://db.inf.uni-tuebingen.de/team/DanielO-Grady.html

https://www.muehlenbernd.net/
https://github.com/ogrady/inf3project
https://db.inf.uni-tuebingen.de/team/DanielO-Grady.html


2.5. The Dragonland Server 13

Dragonhunt can only be played when two players and a dragon meet on the same
field. To play Staghunt two players have to be on a huntable field together in the
forest. Skirmish can be fought whenever two players meet.

The players collect points depending on the minigame and the choices made. The
player with the highest score wins - though technically there is no official end of the
game. In addition all connected players can communicate with each other via a chat
function.

2.5.2 Role of the Dragonland Server

The server acts as an administrator to make sure that everyone plays by the rules.
Whenever a player wants to perform an action, e.g. move on the board from one
field to the next, he/she has to send a request to the server. According to the map
(whether the field is “walkable”) the server either grants or denies the request by
sending No or Ok as an answer. If the request is granted the server will also broad-
cast a message to all participants containing the new position of that player.

2.5.3 Communication of the Dragonland Server

The server communicates via TCP and uses the JavaScript Object Notation (JSON) to
wrap the relevant information that is sent. JSON is a format to bundle information
in a certain structure and access it again easily.

The JSON objects sent by the Dragonland server have a unique single key on the first
level that identifies the information in the value e.g. like in listing 2.10 a new chat
message is always contained in a JSON object that has “mes” as a head key. This
enables an easy recognition and dissection of the incoming information.

JSON1 {"mes":
2 {"senderid":0,
3 "sender":"player42",
4 "text":"Hello!"}
5 }

LISTING 2.10: An example of a JSON object sent by the Dragonland
server

The communication from a client to the server is specified by a strict command struc-
ture that the client has to adopt.6 All requests for retrieving information from the
server are marked by the key word get. Inquiries for performing some kind of action
like moving or challenging another player start with the key word ask. If “player42”
wants to send a chat message that results in the JSON object in listing 2.10 he/she
needs to send the request ask:say:Hello! to the server.

6 see https://github.com/ogrady/inf3project/wiki

https://github.com/ogrady/inf3project/wiki




15

Chapter 3

Development of a Client

The aim of this thesis was to assess whether it is possible to connect a Racket
big-bang client with the Dragonland server and to what extend the server may have
to change, furthermore to find out how a future task for first-year students could
be developed fitted to the desired game. This chapter describes how to set up a
connection and introduces some of the changes to the server.

3.1 Idea

First-year students should benefit from the encouraging effect of multi-player games
in teaching. Thus, they should develop their own client to learn and use concepts
like higher-order programming etc. To not overburden them with design concepts,
distributed programming, network communication and JSON data, an interlayer
should be created that partly frees the students from that. That way the task for
the students can be focused on the subjects that are important in first-year teaching
in programming. The first draft of a client that could act as such an interlayer is
described in the following sections.

3.2 Connecting to the Server

In the beginning the development of a client proved to be difficult. The server as
well as big-bang use TCP but a simple big-bang client like in listing 3.4 would not
connect to the server. Therefore as an experiment a small TCP client was created
to explore the behaviour of the client itself and that of the server (see listing 3.1).
Furthermore it created the opportunity to analyse the structure of JSON messages.

There are several functions that can be used to write to an output port which can be
narrowed down to:

• (display datum [out])

• (write datum [out])

• (print datum [out quote-depth])

It is also possible to use different reading functions such as

• (read [in]) and

• (read-line [in mode]).



16 Chapter 3. Development of a Client

Racket1 (define client
2 (lambda (port ip)
3 (define-values [in out] (tcp-connect ip port))
4 (display (read-line in)) ; (diplayln (read in))
5 (display "get:map" out) ; (write "get:map" out)
6 ; (print "get:map" out)
7 (close-output-port out)
8 (display (read-line in))
9 (close-input-port in)))

10

11 (client 1234 "LOCALHOST")

LISTING 3.1: Simple TCP client to test the connection

Partially the behaviour of these functions vary a lot which is discussed further in
sections 3.3.1 and 4.5.1.

But the notion of these differences in behaviour did not solve the problem of the
failed connection. The humble result of trying to connect a big-bang client with the
server remained an abandoned connection due to protocol problems.

Taking a look at the source code of the universe teachpack revealed the origin of that
error. The responsible function is presented in listing 3.2.

Racket1 (define (tcp-register in out name)
2 (define msg `(REGISTER ((name ,(if name name (gensym 'world))))))
3 (tcp-send out msg)
4 (define ackn (tcp-receive in))
5 (unless (equal? ackn '(OKAY))
6 (raise tcp-eof)))

LISTING 3.2: Source code of the universe teachpack: establishing the
connection

When connecting to a (universe) server big-bang sends a message to register by
a name with the server. The name can be given with a big-bang clause (name
"player42") or generated automatically (line 2 in listing 3.2). The (universe) server
then replies to the registration with an acknowledging message. That message has
to equal (OKAY) (line 51). Otherwise an end-of-file error is raised that closes the con-
nection.

In the teaching language Die Macht der Abstraktion (DMdA) symbols are treated
slightly differently which changes the acknowledging message to (|OKAY|). This
also works in normal Racket language. The curious part is that the tubes only sur-
round the text and not the complete symbol.

Due to the necessity of the acknowledging message the server has to be changed to
send it to the new client before broadcasting any other information about the en-
trance of that client. This modification was necessary even though it maybe lessens
the server’s universal usage.

1 The apostrophe marks a symbol in Racket even though it may look like a list with the parentheses
at first sight.



3.3. Steps of Programming 17

Java1 public synchronized void sendRegisterOk() {
2 send("(OKAY)"); // or more general: "(|OKAY|)"
3 }

LISTING 3.3: Java method to send the acknowledging message

3.3 Steps of Programming

After a stable connection between server and client could be established the actual
development started with the client in listing 3.4.

Racket1 (define (analyse ws msg) (print msg))
2

3 (big-bang #f
4 (to-draw (lambda (ws) (empty-scene 200 200)))
5 (on-receive analyse)
6 (register "LOCALHOST")
7 (port 1234))

LISTING 3.4: The simplest big-bang client

3.3.1 Parsing JSON

The preprocessing of the data began with the parsing of the JSON data that was
received as a message in analyse (line 1 of listing 3.4). The first problem occurred
here. As mentioned before there are several reading functions to read in data from
an input port. The universe teachpack makes use of the read function that only reads
one datum after each other. A datum is anything that can be a single element.2

This element is then interpreted by Racket. For a JSON object that means: curly and
squared brackets evolve into normal parentheses and commas stand for unquote.
Fortunately a JSON object is always just one datum because the surrounding curly
brackets are interpreted by Racket as a list. Hence a JSON object is received by
Racket as a list of lists.

For example the JSON object
{"mes": {"senderid": 0, "sender": "player42", "text":"Hello!"}}
is received as
'("mes" : ("senderid" : 0 ,"sender" : "player42" ,"text":"Hello!"))
which is equal to
(list "mes" ': (list "senderid" ': 0 (list 'unquote "sender") ':
"player42" (list 'unquote "text") ': "Hello!")).

The behaviour of the read function can be further explained with the following ex-
ample. If the server were to send the message “Hello player42!”, read would be
called twice to first read Hello as a symbol and secondly player42! as another symbol.
Strings are only read as one string by read if surrounded by quotation marks. Thus,

2 see https://docs.racket-lang.org/reference/reader.html#%28tech._datum%29

https://docs.racket-lang.org/reference/reader.html#%28tech._datum%29


18 Chapter 3. Development of a Client

surrounding every message to be sent with quotation marks is a sensible modifica-
tion of the server. Otherwise the resulting list has to be parsed into a string con-
taining a valid JSON object first before being able to make use of the JSON library.
As the task required to change the server as little as possible such a function was
developed. It is presented in detail in section 4.3.

3.3.2 Analysing JSON

In the next step the string containing the JSON object could be converted into a JSON
hash by using Racket’s JSON library.3 Then the hash had to be analysed. A hash can
be simply searched with a loop to find key-value pairs. The structure of the JSON
objects lead to a few functions that allow dissecting the hash easily. In particular the
feature of having one head key is of importance. This feature is used to analyse and
identify the JSON object correctly to be able to act accordingly.

3.3.3 Processing Data

Based on the type of information, e.g. the update of a player or the transmission
of a chat message, various functions can be called to process the data further. For
that matter functions were developed that offer access to hashs easily and extract
relevant data. This data constitutes the arguments of the functions that actually deal
with the information to manipulate the world state. Their implementation belongs
to the part that the students have to fulfill. A presentation of all functions to parse,
analyse and process JSON data can be found in section 4.3.

3.4 Workflow of the Client

With the preprocessing of the input from the server and the functions that manipu-
late the world state and represent the game the client was fully working. Figure 3.1
shows the workflow and the use of the JSON functions and the JSON library in the
client graphically. Every time a message from the server is received, the following
steps are executed.

1. The input data from the server is parsed into a string containing a valid JSON
object.

2. The achieved string is converted into a JSON hash by using Racket’s JSON
library.

3. Then the message can be analysed. The head key reveals its identity. For ex-
ample the key “mes” announces a new chat message while “challenge” reports
that the player was challenged by someone else etc.

4. Depending on the head key the respective arguments can be extracted so that
in the end the appropriate event can be triggered by calling the student’s func-
tion.

The work of the client was set but it was one client. There were no clean borders
between a possible interlayer and what could be the students’ task. Furthermore if

3 see http://docs.racket-lang.org/json/index.html?q=json

http://docs.racket-lang.org/json/index.html?q=json


3.4. Workflow of the Client 19

FIGURE 3.1: Workflow of the client: The steps of preprocessing server
input with the use of JSON functions.

the server implemented a different game it would be unclear which part of the code
could be reused.





21

Chapter 4

Abstraction to a General Model

The client introduced in chapter 3 comprised all functions. A division was neces-
sary to separate the intended work for the students from the code to run in the back-
ground and to depict reusable code. This chapter introduces a model that fulfills
these requirements and explains its different parts.

4.1 Turning the Idea into a Model

4.1.1 Model of the Communication

The idea introduced in the last chapter was to create an interlayer that frees the stu-
dents from working with JSON data and network communication. Only the relevant
data should be presented to the students in a template.

FIGURE 4.1: Communication between server, game client and stu-
dent client: The server writes to the output stream of a client by using
the PrintWriter.write() method. The JSON object is received by
the game client that manages the connection. The game client pre-
processes the data and provides an interface that implements game-
specific events. The events are triggered by the game client and the
corresponding function from the template is called. These functions
are implemented by the students. The template and its implemen-
tation form the student client. The student client communicates di-
rectly with the server by returning packages and making use of the

command structure of the server.



22 Chapter 4. Abstraction to a General Model

The abstraction to a general model was driven by the set-up of the template. Hence
the creation of the model was carried out bottom-up. The template should be ori-
ented towards the known concept of big-bang, simply with new features specific
to the game. It should provide some guidance and secure correct usage of the inter-
face created by the interlayer. The template and its implementation form the student
client. The communication from the student client to the server should be direct and
without interference by making use of the server’s command structure.

The interface provided by the interlayer should be easily adapted if the server or
the game is modified. The workflow of the client described in section 3.4 suggests
that the game-specific dissection of incoming JSON data results in a game-specific
function. Thus, a game client should combine the establishment of a connection to
the server, all the steps that preprocess game-specific data and the interface that pro-
vides this data. The events presented by the interface and the corresponding func-
tions that are to be implemented by the students are triggered by the game client.
Figure 4.1 illustrates the different compounds and their interference with each other.

This division of game client and student client enables the implementation of the
student client in the same way as the big-bang events were handled before when
programming interactive games.

4.1.2 Model of the Logical Units

The model of the communication illustrates the separation of game client and stu-
dent client but it doesn’t reveal anything about the reusability of the code.

FIGURE 4.2: Model of the logical units: Everything is based on the
JSON module. It provides functions for parsing, analysing and ex-
tracting JSON data. The game client merges these functions and the

data to create an interface that the template reverts to.



4.2. Student Client: The Template 23

Changing the game should be a possibility that requires little modification and high
usage of the existing code. To illustrate which parts of the code can be used again
completely, need only minor modifications and which part holds game-specific code
that is interchangeable, the following division was made (see figure 4.2). Firstly, a
JSON module was created that contains functions to convert the input data into a
JSON string and access JSON hashs. Secondly, there is a file that provides the game-
specific function for the students to use and therein offers an event based interface.
The template that the students are supposed to use forms the third part.

This division was chosen to have a clear separation of the interchangeable game part
and the unit of code that can be reused in order to need as little effort as possible to
change the game. The following sections describe these units and their potential
of reusability. The code for the units can be found in the Racket folder in the git
repository.

4.2 Student Client: The Template

The template should make use of a function similar to big-bang with new features
specific to the game. This function should resemble the structure of big-bang to
make the transition from an interactive game using big-bang to a game client for
multi-player games easy. The ideal was adding new clauses to big-bang and re-
naming it to clearly show the difference. This ideal is indicated in listing 4.1 but
unfortunately could not be put into practice accordingly.

Racket1 (dragonland ws
2 (on-key react)
3 (on-mouse click)
4 (to-draw render)
5

6 (on-dragon dragon)
7 ...
8

9 (register "LOCALHOST")
10 (port 1234))

LISTING 4.1: The ideal set-up of a game-specific big-bang function

Partially copying the source code of the universe teachpack to create a customised
version of big-bang was not an option due to the inclusion of the existing code that is
based on the use of big-bang already. An acceptable solution was the use of optional
keyword arguments1. A function with keyword arguments resembles the look of the
clauses in big-bang and will therefore ease the transfer. Every keyword argument
represents an event. Thus, the function belonging to the keyword appears in the
template, takes the world state as an argument and returns with a new world state
either in a package or as a single expression.

In addition to the resemblance in appearance optional keyword arguments have the
advantage that minor events of the game that are not essential to the functioning of
the client do not have to be implemented. Furthermore most of the big-bang clauses

1 see Optional Arguments and Keyord Arguments

https://docs.racket-lang.org/guide/lambda.html#%28part._.Declaring_.Optional_.Arguments%29
https://docs.racket-lang.org/guide/lambda.html#%28part._lambda-keywords%29


24 Chapter 4. Abstraction to a General Model

are optional as well and the order of the optional keyword arguments can be chosen
randomly like the clauses in big-bang. This not only avoids mistakes when using
them but proves their similarity (see listing 4.2).

Racket1 (dragonland ws
2 #:on-key react
3 #:on-mouse click
4 #:to-draw render
5

6 #:on-dragon dragon
7 ...
8

9 "LOCALHOST"
10 1234)

LISTING 4.2: Optional keyword arguments offer high resemblance to
the ideal

The optionality of arguments also has the advantage of being able to structure the
task of implementing the client into several smaller tasks. The template can simply
be expanded. Since optional arguments need a default argument that is used if the
argument is not specified, a fully implemented function can be employed instead of
one that simply keeps the game from crashing. That way the game will work cor-
rectly even though not everything was implemented. Unfortunately not every event
handling function can be replaced.2 But since these functions run in the background
in Racket language, they could enable side effects like printing if a teaching language
is used in the template or manage complex GUI programming.

However, keyword arguments are not available in the teaching languages HtDP and
DMdA. Consequently this possibility is only of value when using a Racket language.
The less elegant but also working solution is a normal function that takes all event
based functions as arguments. The disadvantages are the necessity of all functions,
the strict order they have to follow and the loss of the big-bang-like composition of
the function. Nevertheless the concept of higher-order programming is present in
that solution as well.

4.3 JSON Module

The JSON module holds all functions for parsing and accessing JSON data. It is
completely detached from the game or the set-up of the server. It forms the section
of completely reusable code. No matter the game, the structure of JSON objects is
always the same and allows the universal application of the functions. The first part
of the module is the conversion of the raw JSON object (the list of lists that Racket
recognises as a datum as described in section 3.3.1) into a string. The second part
contains all the functions necessary to work with a JSON hash and access its data.

2 If the world state is a structure that has to be manipulated, the structure specific functions are not
accessible from the location of the default functions (since mutual imports are not allowed).



4.3. JSON Module 25

4.3.1 Documentation of the Functions

The js-to-string function turns the input from the server that Racket interprets as
a list of lists into a string containing a valid JSON object.

Depending on the js-expression the output is either

• the first key if json is a hash

• the first element if json is a list

• itself otherwise.

get-value returns the JSON value for the given key from the first layer of the JSON
hash, #f if non-existent.

This function is useful to extract a lot of arguments from a big JSON object. path
specifies the path of the keys that are to be followed to extract the last value. Lists
can be accessed by numbers via list-ref. If the path doesn’t exist, it returns #f.

The string containing the path has to be formed thus: “key1/key2/.../keyN”. The
keys can either refer to a key in hash or an element in list. As an example “root/4”
would find the fifth element in the list that is stored in the key “root”.

Other Functions

Some other functions were developed for accessing JSON hashs but in the end not
used for the thesis. Their description can be found in the scriblings of the code in the
git repository under Racket > scribbles > json.scrbl.

https://docs.racket-lang.org/reference/pairs.html#%28def._%28%28quote._~23~25kernel%29._list-ref%29%29


26 Chapter 4. Abstraction to a General Model

4.4 Game Client

The interchangeable part of the model is the game-specific function
dragonland/racket3 that manages the connection to the server with big-bang. It
defines the default functions to use if the optional argument is not set. The game
client also makes use of the JSON module and thus combines everything to form the
interlayer. Changes in the set-up of a server message result in small modifications
here without affecting the template.

Racket1 (define
2 (dragonland/racket ws
3 #:on-key [key-fun keyF]
4 #:on-player [player-fun playerF]
5 ...
6 ip
7 port-no)
8

9 (set! playerF player-fun)
10 ...
11

12 (big-bang ws
13 (on-key key-fun)
14 (to-draw draw-fun)
15 (on-mouse mouse-fun)
16 (on-receive analyse)
17 (register ip)
18 (port port-no)))

LISTING 4.3: The general set-up of the game client: The function
is defined with the world state as its first argument followed by all
optional keyword arguments (lines 3-5). IP and port number also
have to be specified. All optional arguments have a global default
argument like the playerF function. It has to be set to the student’s
function to be able to use it in analyse. big-bang is called with its
clauses and the corresponding functions. analyse is not provided by
the template but handles the preprocessing of data and triggers the

appropriate events.

The “look” of the dragonland/racket function was determined in the development
of the student client. Its set-up can be seen in listing 4.3 and remains the same inde-
pendent from the game: the optional keyword arguments with the flags as well as
setting the global functions (playerF etc.) to the student’s functions.

The heart of the game client that reflects the game is the analyse function - the only
function not implemented in the template. In this function the messages from the
server are analysed and according to the content the events are triggered, e.g. such
that the player function from the template is called on when new information about
a player is received.

3 There also is a dragonland/teaching function that works without optional keyword arguments
and thus can be used in the teaching languages DMdA. and HtDP



4.5. Testing the Model 27

As described before the Dragonland server structures the JSON objects in such a way
that there is only one key on the upper level that characterises the message (see
section 2.5.3). Therefore after parsing the input into a JSON hash, the head key of the
hash is analysed to extract the necessary arguments and trigger the corresponding
events. analyse and the example of triggering the chat message event can be seen
in listing 4.4 lines 12 et sqq.

Racket1 ; analyse the message from server
2 ; WorldState tcp-input -> HandlerResult (by invoking the student's

functions)↪→

3 (define (analyse ws input)
4 ; parsing tcp input to json hash
5 (let* ([js (string->jsexpr (js-to-string input))]
6 [root (head-key js)])
7 ; disassembly the server message based on the game
8 (cond [(symbol? root)
9 (cond

10

11 ; trigger the chat-message event
12 [(symbol=? root 'mes)
13 (msgF ws
14 (path js "mes/senderid")
15 (path js "mes/sender")
16 (path js "mes/text"))]
17

18 ...)]...)))

LISTING 4.4: Analysing the server input and triggering events: The
input is parsed into a string and then into a hash (line 5). The head key
is extracted next (line 6). According to its value the relevant function
from the template is called with the extracted data es arguments (lines

12-16 for a chat message).

4.5 Testing the Model

The model was developed and tested on the provided server with the game Dragon-
land. The units interlock such that the template imports the game client that provides
the game-specific function. The game client in turn imports the JSON module and
Racket’s JSON library. To test that all units engage correctly a student client was
created by fully implementing the template.

4.5.1 The Client from a Student’s Point of View

The template for the student client was already developed as a part of the model.
Therefore it was possible to completely take over a student’s point of view. Within
the frame provided by the template it was possible to complete most of the client
without difficulty. Figure 4.3 shows the final result. However, programming the
student client also presented some challenges:



28 Chapter 4. Abstraction to a General Model

FIGURE 4.3: Screenshot: the implementation of a Dragonland client in
Racket

• The communication from client to server is set by specific commands that the
client has to send. When sending these commands another problem of how
Racket reads and sends data occurred. When reading data the JSON objects
were not read as a string but as a list (see section 3.3.1). When writing data to
a port Racket offers several functions (see section 3.2). The universe teachpack
uses write which (unlike display) sends the text of a string with the quota-
tion marks. The server reads everything as a string which causes two quota-
tion marks around the messages and hinders the server from recognising the
commands. Only symbols are sent normally. But symbols do not allow whites-
paces - or rather a symbol containing whitespaces is automatically surrounded
by tubes which again makes the message unrecognisable.

It is a special case and only occurs when a player wants to send a chat mes-
sage to another player. Since the message itself is part of the command (and
usually contains whitespaces) it poses a problem. Other special characters like
parentheses or commas also produce this error of tubes surrounding the mes-
sage. This behaviour requires either complicated workarounds in the client
with symbols which is not a universally valid solution4 or a simple modifi-
cation of the server. The latter means removing the extra quotation marks of
every message and presents the only acceptable solution for public use.

• Especially the GUI of the chat functionality was very challenging with
big-bang. With the universe and the image teachpack the whole GUI is a com-
position of overlying images. There are no GUI elements like a text input field
that contains accessible text. Every typed letter had to be stored individually
in the world state of the client. Displaying text also poses a problem since there

4 It was done in the exemplary implementation of the student client since the server should remain
unchanged and as it is not part of the model that might be used by others.



4.5. Testing the Model 29

are no automatic linebreaks when working with images. Nevertheless it was
possible to create an aesthetically pleasing GUI, but the effort was out of all
proportion compared to the rest of the client.

• The implementation was done in Racket language. A very small part was
translated to the teaching language DMdA. This caused more modifications
than expected. A game like Dragonland with its complexity is not easily imple-
mented in a teaching language that does not offer side effects.





31

Chapter 5

Discussion and Conclusion

5.1 The Task

The purpose of this thesis was to find out whether it is possible to use big-bang and
its TCP connection as a client for any server not written in Racket; furthermore to
explore the details of that connection such as demands on the server and treatment
of data by a big-bang client. Then these findings should be used with a given Java
server to implement such a client and create an interlayer. This interlayer should
enable easy adaptation to changes of the server and pose an interface for a simple
version of a client for first-year-students to implement themselves.

5.2 Summary of the Results

The model describes the set-up of the interlayer, its different units and how they
interlock. The chosen division into the units JSON module, game client and student
template makes it easy to keep a structure even with complex games.

The steps in this section form a summary of the results according to the model. They
also present the directions for reproducing this work with any server and thereby
creating a frame for first-year-students to implement a game client.

Server specification:

1. The server needs to send an acknowledging message to the client before start-
ing any other communication. Otherwise big-bang will abandon the connec-
tion (see section 3.2).

2. The communication between server and client is easier if the server wraps quo-
tation marks around every message to send (see section 3.3.1) and removes
extra quotation marks from every message received. (see section 4.5.1)

3. No matter whether the server communicates via JSON or uses a different data-
interchange format, it is advantageous to have an identifier for the kind of
message, e.g. only a single key on the first layer of the JSON object to differen-
tiate between a new player who entered the game or a chat message that was
received from another player (see section 2.5.3).



32 Chapter 5. Discussion and Conclusion

Creating an interlayer:

4. A normal big-bang client can be used in the interlayer following the example
in game-client.rkt as described in section 4.4. It creates the interface for the
student template.

5. The major change is implemented in the function called by the on-receive
clause. There the messages from the server have to be dissected and the corre-
sponding events need to be triggered. If JSON is used, the JSON module (see
section 4.3) created for this work will support the analysis of the data.

6. The decision of the students’ language is set here since keyword arguments
are not available in teaching languages. Optional keyword arguments require
default functions to prevent the client from crashing (see section 4.2).

7. Racket and teaching languages behave differently in case sensitivity. Thus,
names of provided functions should contain lower case characters only.

Supplying students with sufficient information:

8. Providing a template shows the students a frame in which to operate and pre-
vents problems.

9. Working without a template can be more challenging but will push the stu-
dents to deeply dive into the topic. Extensive documentation is needed in this
case.

5.3 Discussion: Changing the Game

Changing the game leads to modifications in the interlayer. During development
the server did undergo a few changes. That made it possible to estimate the effort of
work that has to be invested if the communication of the server or the game changes
slightly. A difference in the communication or the set-up of a JSON object that does
not effect the logic of the game only requires small changes in the game client. Only
large variations in the logic of the game like adding or removing an event leads to
adjustments in the game client and the student template.

According to the model of logical units a change of game (that also uses JSON) re-
sults in a new game client and student client (see figure 5.1). The JSON module
remains unaffected and can be used completely. The amount of code that has to
be created to change the game client is higher than wished for but it depends a lot
on the complexity of the game. In addition, following the steps from the summary
makes it straightforward to create a new game client and template. It is done in the
style of the interlayer for the Dragonland game.

5.4 Concluding Remarks

Programming a client for a game can reach high complexity for first-year students
and require much time and effort - especially when using a teaching language. The



5.4. Concluding Remarks 33

FIGURE 5.1: Model of the logical units with interchangeable parts:
The game client and the student template have to be replaced com-
pletely. The structure of both units remains the same though which

eases the exchange.

game is very motivating but the testing of the model indicated that the complexity
of Dragonland is perceived as very high. As described in section 4.2 the assignment
could be split into several subtasks or some code could be provided in the template
already.

The inclusion of files is another matter. The template simply requires the files which
means that they have to be in the same folder as the template. Apart from including
the files directly it could be possible to also provide them in a teachpack to avoid
confusion and keep the code from the students if a division into several subtasks is
desired.

Future work should test this model on a different game server. It would be encourag-
ing to see this work in practice with the new first-year students and an easier game.
The high motivational factor of multi-player games in first-year teaching suggest a
great success and a lot of fun for the students.





35

Bibliography

[Ach08] Peter Achten. “Teaching Functional Programming with Soccer-fun”. In:
Proceedings of the 2008 International Workshop on Functional and Declarative
Programming in Education. FDPE ’08. Victoria, BC, Canada: ACM, 2008,
pp. 61–72. ISBN: 978-1-60558-068-5. DOI: 10.1145/1411260.1411270. URL:
http://doi.acm.org/10.1145/1411260.1411270.

[CNP03] Antony Courtney, Henrik Nilsson, and John Peterson. “The Yampa Ar-
cade”. In: Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell.
Haskell ’03. Uppsala, Sweden: ACM, 2003, pp. 7–18. ISBN: 1-58113-758-
3. DOI: 10.1145/871895.871897. URL: http://doi.acm.org/10.1145/
871895.871897.

[Fel+09] Matthias Felleisen et al. “A Functional I/O System or, Fun for Freshman
Kids”. In: SIGPLAN Not. 44.9 (Aug. 2009), pp. 47–58. ISSN: 0362-1340. DOI:
10 . 1145 / 1631687 . 1596561. URL: http : / / doi . acm . org / 10 . 1145 /
1631687.1596561.

[Fel+13] Matthias Felleisen et al. Realm of Racket: Learn to Program, One Game at a
Time! San Francisco, CA, USA: No Starch Press, 2013. ISBN: 1593274912,
9781593274917.

[Fel+15] Matthias Felleisen et al. “The Racket Manifesto”. In: 1st Summit on Ad-
vances in Programming Languages (SNAPL 2015). Ed. by Thomas Ball et
al. Vol. 32. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2015, pp. 113–128. ISBN: 978-3-939897-80-4. DOI: 10.4230/LIPIcs.SNAPL.
2015.113. URL: http://drops.dagstuhl.de/opus/volltexte/2015/
5021.

[Fel14] Matthias Felleisen. Worlds and the Universe: “universe.rkt”. 2014. URL:
https://docs.racket-lang.org/teachpack/2htdpuniverse.html.

[Mor11] Marco T. Morazán. “Functional Video Games in the CS1 Classroom”.
In: Trends in Functional Programming. Ed. by Rex Page, Zoltán Horváth,
and Viktória Zsók. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 166–183. ISBN: 978-3-642-22941-1.

[Mor15] Marco T. Morazán. “Generative and accumulative recursion made fun for
beginners”. In: Computer Languages, Systems & Structures 44 (2015). SI: TFP
2011/12, pp. 181 –197. ISSN: 1477-8424. DOI: https://doi.org/10.1016/
j.cl.2015.08.001. URL: http://www.sciencedirect.com/science/
article/pii/S1477842415000524.

[Mor18] Marco T. Morazán. “Infusing an HtDP-based CS1 with distributed pro-
gramming using functional video games”. In: Journal of Functional Pro-
gramming 28 (2018), e5. DOI: 10.1017/S0956796818000059.

http://dx.doi.org/10.1145/1411260.1411270
http://doi.acm.org/10.1145/1411260.1411270
http://dx.doi.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
http://doi.acm.org/10.1145/871895.871897
http://dx.doi.org/10.1145/1631687.1596561
http://doi.acm.org/10.1145/1631687.1596561
http://doi.acm.org/10.1145/1631687.1596561
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.113
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.113
http://drops.dagstuhl.de/opus/volltexte/2015/5021
http://drops.dagstuhl.de/opus/volltexte/2015/5021
https://docs.racket-lang.org/teachpack/2htdpuniverse.html
http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.08.001
http://dx.doi.org/https://doi.org/10.1016/j.cl.2015.08.001
http://www.sciencedirect.com/science/article/pii/S1477842415000524
http://www.sciencedirect.com/science/article/pii/S1477842415000524
http://dx.doi.org/10.1017/S0956796818000059

	Declaration of Authorship
	Abstract
	Introduction
	Pedagogical Value of Multi-Player Games
	Why Racket?
	Racket - A Lisp-based Language
	Why Racket?

	Aim of this Thesis

	Multi-Player Games in Racket
	The Universe Teachpack
	Worlds
	Simulations
	Interactive Games
	An Interactive Example

	A Universe Represents a Server
	The Server
	Role of the Server
	The Client
	Communication
	A Distributed Example

	How About a Different Server?
	The Dragonland Server
	Description of the Game Dragonland
	Role of the Dragonland Server
	Communication of the Dragonland Server


	Development of a Client
	Idea
	Connecting to the Server
	Steps of Programming
	Parsing JSON
	Analysing JSON
	Processing Data

	Workflow of the Client

	Abstraction to a General Model
	Turning the Idea into a Model
	Model of the Communication
	Model of the Logical Units

	Student Client: The Template
	JSON Module
	Documentation of the Functions

	Game Client
	Testing the Model
	The Client from a Student's Point of View


	Discussion and Conclusion
	The Task
	Summary of the Results
	Discussion: Changing the Game
	Concluding Remarks

	Bibliography

