
Mathematisch-Naturwissenschaftliche Fakultät
Eberhard Karls Universität Tübingen

Bachelorthesis

Automatic Transformation of Iterative to
Tail-Recursive Functions in Python

Alexander Mühlbauer

July 25th, 2018

Reviewer
Prof. Dr. Torsten Grust

Database Systems Research Group
University of Tuebingen

Supervisor
Christian Duta

Database Systems Research Group
University of Tuebingen

Mühlbauer, Alexander:
Automatic Transformation of Iterative to Tail-Recursive Functions in Python
Bachelorthesis in Computer Science
University of Tuebingen
Period: 04.04.2018 bis 25.07.2018

Abstract
Context The groundwork for this thesis is the paper Automatic Transformation of
Iterative Loops into Recursive Methods [IS14] by Insa and Silva, published in 2014.
In their work Insa and Silva provide transformation rules for all iterative loops into
equivalent tail-recursive functions and give an implementation of their algorithm in Java.
While Python and Java both support iterative loops and recursion, there are some
fundamental differences that require to deviate and even extend the approach of Insa
and Silva.

Objective This thesis not only aims to provide a methodology that can be used to
transform all iterative loops into recursive functions, but also to offer a proof of concept
for developing that transformation as a compiler for source code written in the Python
programming language.

Results Taking the transformation rules provided by Insa and Silva as a starting point
it was possible to modify and extend them to be applicable to the Python programming
language. Furthermore this thesis offers an approach to transform iteration in the context
of the comprehension syntax and even for the Python specific generator functions.

Conclusion Implementing an automatic loop to tail-recursive function transforma-
tion in another multi-paradigm programming language than Java is possible using the
methodology offered by Insa and Silva. This proves their claim and serves as a proof of
concept for their methodology to be adopted in other programming languages, support-
ing iteration and recursion, as well.

Contents
1 Introduction 6

1.1 Motivation . 6
1.2 Objective . 6
1.3 Implementation Language . 7
1.4 Structure . 7

2 Methodology 8
2.1 While-Loop Transformation . 8

2.1.1 Building the tail-recursive function: simple case 9
2.1.2 Approach Control-Flow Changing Statements 11
2.1.3 Placement of the tail-recursive function 19
2.1.4 Naming introduced variables . 20

2.2 For-Loop Transformation . 21
2.3 Comprehension to For Loop Transformation 25
2.4 Loops in Generator Functions . 26

3 Implementation 28
3.1 Python AST . 28
3.2 Transformation Pipeline . 31
3.3 Transformation Steps . 33

3.3.1 Preprocessing steps . 33
3.3.2 Loop transformation . 41

4 Related Work 48

5 Conclusion 49

References 51

4

List of Figures
1 Transformation of a while loop (cf. [IS14]) 8
2 flow chart of Python’s while-else statement 9
3 extended transformation scheme, including return statements 11
4 flow-charts of loops containing break or continue 13
5 flow-charts of loops containing break or continue 13
6 extended transformation scheme, including continue 15
7 transformation scheme for while loops with try/except statement inside

body . 17
8 Blackbox that transforms any for loop into a semantically equal while loop 21
9 opcode of the for-loop of fig. ; numbers on the left indicate the line number

in the source code . 22
10 flow-chart of both loop implementations given in figure 11 23
11 for to while-loop transformation . 23
12 control flow of Python’s for loop with an else clause 24
13 Transformation of list comprehension to for loop(s) [Fou18] 25
14 Defining an infinite stream of integers, with a generator function 26
15 Infinite stream of integers generator, defined with recursion 27
16 ast.Module node with its attributes . 28
17 ast.For node with its attributes . 28
18 ast.While node with its attributes . 29
19 ast.If node with its attributes . 29
20 ast.Try node with its attributes . 29
21 ast.Assign node with its attributes . 29
22 ast.ListComp node with its attributes . 30
23 ast.FunctionDef node with its attributes 30
24 Transformation pipeline; input is a Python-AST; output is a modified

version of the AST . 32
25 inspecting step 1 of the transformation pipeline 34
26 inspecting step 2 of the transformation pipeline 36
27 Statically typed vs. dynamically typed variables 38
28 inspecting step 3 of the transformation pipeline 39
29 inspecting step 2 of the transformation pipeline 40
30 inspecting step 4 of the transformation pipeline 41
31 Implementation of the Levenshtein distance algorithm 43
32 Levenshtein distance algorithm after transformation step 2○ of the trans-

formation pipeline . 44
33 Levenshtein distance algorithm after transformation step 3○ of the trans-

formation pipeline . 45
34 Levenshtein distance algorithm after transformation step 4○ of the trans-

formation pipeline . 47

5

1 Introduction

1 Introduction

1.1 Motivation
Iterative loops and recursion are both different concepts capable of expressing the same
intention; however, the concept of loops does not even exist in the functional program-
ming paradigm. The way iteration (or repeating code) is dealt with in functional pro-
gramming is recursion.

Despite that, there exist a lot of programming languages that support both concepts
and leave the programmer with the choice of which to use. Regarding performance, it-
eration is often used over recursion, since a lot of compliers can deal with iteration more
efficiently [IS14]. On the other hand, it is commonly accepted that many algorithms can
be implemented much more cleanly using recursion [Fil94].

Currently, the chair for Database Systems Research (University of Tuebingen), does
research on transforming (tail) recursive functions to declarative functions without re-
cursive function calls. The goal is to be able to write certain algorithms in an intuitive
way. A declarative implementation comes with observable perormance benefits. Addi-
tionally, being able to transform all functions using loops to a tail-recursive formulation
means, that this model can be extended by first converting all loops to tail-recursive
functions. In consequence not only recursive functions may be automatically converted
to SQL functions without recursive function calls, but also functions, using loops.

1.2 Objective
Although iteration is considered to be easily definable as (tail) recursion [Fil94], notably,
very few implementations of automatic transformation from iterative loops to recursion
can be found. Insa and Silva [IS14] came across this issue and published a publicly
available Java library1 that is able to remove all iterative loops in Java-Code, replacing
them with the corresponding (tail) recursive function. Along with their library, they
propose a methodology to do this transformation, which they say is general enough to
be adapted in other programming languages. The objective of this thesis is to establish a
proof of concept by implementing their methodology in another programming language
and to acquire insights to the process of implementing such a compiler.

1http://www.dsic.upv.es/~jsilva/loops2recursion/

6

1 Introduction

1.3 Implementation Language
To realize automatic loop transformation, for a proof of concept, Python is chosen. It
is a multi-paradigm programming language, that already provides the necessary tools
to modify program text via the abstract syntax tree (AST). Furthermore it provides
methods to programmatically transform an AST and to obtain source code from an
AST. To present the underlying concept Python syntax will be used as well, because it
is easy to read and understand. If not stated otherwise this work refers to the CPython
implementation (v. 3.6)2.

1.4 Structure
This thesis is divided in five sections, including the introduction. In section 2 a general
methodology to transform iterative loops to tail-recursive functions is provided. The
methodology section also proposes an approach to be able to transform loops in the
context of the Python specific concept of generator functions. Additionally a strategy
to prepare the comprehension syntax in order to transform it to a tail recursive function
is presented. Section 3 describes the actual implementation in Python. Therefore the
Python abstract syntax tree (AST) is addressed briefly. The transformation process can
be depicted as a pipeline, that is also introduced in this section to give an overview.
In section 3.3 each step of the implementation is explained in detail. In section 4 we
give an overview of related work and the final section 5 gives a conclusion and presents
possible future work, related to this thesis.

2https://docs.python.org/3.6/index.html

7

2 Methodology

2 Methodology
In this section the approach for loop-transformation is discussed. Having the for and
while-loop Python offers two iterative control-flow statements that are able to repeat
code, subject to a condition. In the following sections transformation rules for both
loop types will be provided, using the suggested transformation by Insa and Silva [IS14],
serving as a starting point to adapt the methodology to Python programming language.
Additionally an approach to transform the comprehension syntax, implicitly using for
loops to create lists, sets or dictionaries is addressed in section 2.3 as well as a trans-
formation rule for loops being used in the context of the Python specific concept of
generator functions is provided in section 2.4.

2.1 While-Loop Transformation
Any while loop can be transformed into a corresponding tail-recursive function, with the
actual loop code being replaced by a caller. Dependent on the statements used inside
of the while loop’s

�� ��body the transformation needs to be extended. Statements that
can change the control-flow inside of the loop such as break/ continue, return, try/
except need special treatment if they occur inside the

�� ��body of a loop. To explain the
methodology the treatment for each of these statements is broken apart.

Starting with the simple case (fig. 1), where it is assumed that
�� ��body does not contain

any control-flow changing statements. The corresponding transformation scheme of the
simple-case is depicted in figure 1.

Figure 1: Transformation of a while loop (cf. [IS14])

The while statement in Python supports a special functionality, where an else clause
can be placed directly after the loop-body to execute code if the condition (<cond>)
evaluates to false. This code is not executed if the statements break or continue are
used to alter the control-flow of the loop code inside

�� ��body (see, fig. 2).
We can address this feature by carrying over the else clause - together with its body

(
�� ��else_body) - to the callers if statement.

8

2 Methodology

Figure 2: flow chart of Python’s while-else statement

2.1.1 Building the tail-recursive function: simple case

The tail-recursive function (loop()) expects certain parameters, being the variable names,
that values are assigned to inside of body and all variables used in the loop condition
<cond> as its arguments. The function body of loop() contains the original loop

�� ��body
and a recursive call. The body of a while loop is only executed if the condition (<cond>)
evaluates to True, so recursive calls are always wrapped by an if statement first checking
<cond>.

The values, assigned to the variables in vars , can change during the execution of
loop(), therefore vars has to be returned by the loop() function when the recursion
has finished.

The caller replaces the actual loop in the code. It is built by a call to the tail-recursive
function (loop()) that is assigned to a variable (result), to be able to access all elements
contained in vars .
In reassign vars the modified variable values, stored in the result list, are reassigned

to their original variable names (e.g. var1 = result[0],...). This assures that they
can be used in the following code (

�� ��after).

9

2 Methodology

Example This example shows the transformation of a function fib(n) that implements
an algorithm to return the n-th fibonacci number:
def fib(n):

a, b = 0, 1
while n > 0:

a, b = b, a+b
n -= 1

return a

Applying the methodology to transform while loops yields a fib(n) function that im-
plements the same algorithm using tail-recursion instead of an iterative while loop.
def fib(n):

def loop(n, a, b):
a, b = b, a + b
n -= 1
if n > 0:

return loop(n, a, b)
return [[None], n, a, b]

a, b = 0, 1
if n > 0:

result = loop(n, a, b)
n = result[1]
a = result[2]
b = result[3]

return a

10

2 Methodology

2.1.2 Approach Control-Flow Changing Statements

In the following paragraphs it is addressed how to modify the methodology of the simple
case in order to be able to deal with the control-flow changing statements return, break,
continue, try/except.

Transforming Return-Statements Return statements may occur inside a loop, if
it is enclosed by a function. Obviously a return statement can not be carried over
into the body of the tail-recursive function that has to be built, because this would
affect the control-flow of the tail recursive loop() function, instead it should invoke
the original enclosing function to return. Therefore transforming such a loop needs the
transformation scheme of the base case (1).

Figure 3: extended transformation scheme, including return statements

If a return statement is present inside a while loop’s
�� ��body , this statement needs to

be modified before it can be carried over to the functions body in order to propagate it
to the surrounding function.

In consequence it is no longer enough to return vars , instead information about control-
flow changing statements also need to be returned. To be able to tell if a return state-
ment, was executed in the loop() function, a dedicated tuple as the first list element,
named control , is introduced. The control tuple stores information about a statement
that changes the control-flow. Its first value is either a None value, indicating that the
control-flow is not altered, or the actual statement as a string (i.e. ’return’). If a return
statement is executed control is also used to propagate the expression (<expr>), that
must be returned by the enclosing function, as the second value of the tuple.

To process the new type of the return value of loop(), supporting control , we also
need to adapt the caller accordingly. Therefore the first element of result is assigned
to a variable called control and then checked for a control-flow changing statement. If
the first element of control holds the string ’return’ <expr> is returned.

11

2 Methodology

Example This example shows the transformation of a function lcm(a,b) that imple-
ments an algorithm to return the least common multiple of two integers a and b:
def lcm(a,b):

candidate = a if a >=b else b
while True:

if candidate % a == 0 and candidate % b == 0:
return candidate

candidate += 1

Applying the methodology to transform while loops, considering the return statement,
yields a lcm(a,b) function that implements the same algorithm using tail-recursion in-
stead of an iterative while loop.
def lcm(a, b):

def loop(candidate):
if candidate % a == 0 and candidate % b == 0:

return [[’return’, candidate], candidate]
candidate += 1
if True:

return loop(candidate)
return [[None], candidate]

candidate = a if a >= b else b
if True:

result = loop(candidate)
control = result[0]
if control[0] is not None:

if control[0] == ’return’:
return control[1]

candidate = result[1]

12

2 Methodology

Transforming Break Break can be used to alter the control-flow of a loop. If a break
statement is reached during the execution of a loop, the program exits the enclosing loop
and jumps directly to the next instruction after the loop.

Code that is located after a break statement, but still inside
�� ��body , will be skipped.

In the context of recursive functions, each iteration of a loop is regarded as one recursive
call [IS14].

Figure 4: flow-charts of loops containing break or continue

Since the control-flow statement break cannot be used outside of an enclosing loop,
we need to transform it. Having a look at figure 5, we can identify how to transform
break to achieve the equal behavior.

Exiting the tail recursive function can be achieved by returning in the context of
recursion. This implements the same behavior as a break statement inside a loop.

Figure 5: flow-charts of loops containing break or continue

13

2 Methodology

Example This example shows the transformation of a function first_occurence_of_letter_in_string(letter,string)
that implements an algorithm to return the position of the first occurence of a letter in
a string if it exists:
def first_occurence_of_letter_in_string(letter, string):

count = 1
length = len(string)
while count <= length:

if string[count-1] == letter:
break

count += 1
if count > length:

return ’No occurence of {} in {}’.format(letter, string)
return count

Applying the methodology to transform while loops, considering the break statement,
yields a first_occurence_of_letter_in_string(letter,string) function that imple-
ments the same algorithm using tail-recursion instead of an iterative while loop.
def first_occurence_of_letter_in_string(letter, string):

def loop(count):
if string[count - 1] == letter:

return [[None], count]
count += 1
if count <= length:

return looop(count)
return [[None], count]

count = None
count = 1
length = len(string)
if count <= length:

result = loop(count)
count = result[1]

if count > length:
return ’No occurence of {} in {}’.format(letter, string)

return count

14

2 Methodology

Transforming Continue A continue statement causes the execution of a loop to
continue with the next iteration. Code that is located after a continue statement, but
still inside

�� ��body , will be skipped as well.
Continuing with the next iteration (of a loop) is equal to a recursive call. Combining

these adaptions with the model of the previous paragraph (see, fig. 3) we obtain an
expanded scheme (see, fig. 6).

Figure 6: extended transformation scheme, including continue

Example This example shows the transformation of a function double_all_even_numbers(xs)
that implements an algorithm to return the list xs with all even numbers multiplied by
two:
def double_all_even_numbers(xs):

count = 0
while count < len(xs):

if xs[count] % 2 != 0:
count += 1
continue

xs[count] *= 2
count += 1

return xs

Applying the methodology to transform while loops, considering the continue state-
ment, yields a double_all_even_numbers(xs) function that implements the same algo-
rithm using tail-recursion instead of an iterative while loop.

15

2 Methodology

def double_all_even_numbers(xs):

def loop(count):
if xs[count] % 2 != 0:

count += 1
if count < len(xs):

return loop(count)
return [[None], count]

xs[count] *= 2
count += 1
if count < len(xs):

return loop(count)
return [[None], count]

count = None
count = 0
if count < len(xs):

result = loop(count)
count = result[1]

return xs

16

2 Methodology

Transforming Try/ Except Typically there are two types of exceptions that interrupt
the normal control flow during the execution of a program: Exceptions, thrown explicitly
by the programmer, using the raise-statement and exceptions that are being thrown
implicitly by an instruction (i.e. invalid mathematical operations).

If there is a try/except statement used inside the
�� ��body of a while-loop, we need to

apply some special modifications because an exception can alter the control-flow. Since
we transfer the

�� ��body to the newly created tail-recursive function, an exception is no
longer caught inside the original function. To still be able to identify the very function,
causing an exception we need to propagate any raised exception from our tail-recursive
function to the original enclosing function, where we replaced the loop with the caller.

For this purpose we use control accordingly. Every raise instruction will be replaced
by a return with the list consisting of control and vars . In the currently treated case
control holds the original statement as a string (e.g. ’raise’) and the exception to raise.
To be able to propagate exceptions that are caused implicitly by an instruction, we

need to wrap the original try/except block within another one. This outer try block
encloses the original try/except block and catches any exceptions; therefore we use
the BaseException handler, which must be the base class of every exception. We also
assign the exception to a new variable (exc), so that we can pass the exception in the
control -list.
Applying these modifications to the model, we obtain a complete transformation

scheme for while loops, taking into account all control-flow changing statements.

Figure 7: transformation scheme for while loops with try/except statement inside body

17

2 Methodology

Example This example shows the transformation of a function divide(xs, divisor)
that implements an algorithm to return the list xs with all numbers divided by divisor,
rounded to three decimal places:
def divide(xs, divisor):

count = 0
while count < len(xs):

try:
xs[count] = round(xs[count]/divisor,3)
count += 1

except ZeroDivisionError:
return ’Dividing {}/{} is not possible. Division by zero!’.format(xs[count],

divisor)
return xs

Applying the methodology to transform while loops, considering the try/except state-
ment, yields a divide(xs, divisor) function that implements the same algorithm using
tail-recursion instead of an iterative while loop.
def divide(xs, divisor):

def loop(count):
try:

try:
xs[count] = round(xs[count] / divisor, 3)
count += 1

except ZeroDivisionError:
return [[’return’,

’Dividing {}/{} is not possible. Division by zero!’.
format(xs[count], divisor)], count]

except BaseException as exc:
return [[’raise’, exc], count]

if count < len(xs):
return tail_rec(count)

return [[None], count]
count = None
count = 0
if count < len(xs):

result = loop(count)
control = result[0]
if control[0] is not None:

if control[0] == ’return’:
return control[1]

if control[0] == ’raise’:
raise control[1]

count = result[1]
return xs

18

2 Methodology

2.1.3 Placement of the tail-recursive function

Inserting and naming the the tail-recursive function definition that has been created
as a part of the while loop transformation can be a very difficult task depending on
the implementation language and how its namespace and scope is defined. In the case
of Python it is actually not so difficult to find the right place, to insert the function
definition.

To explain the placement and naming strategy, the scope of Python is briefly explained
in the following paragraph.

Python Scope The Python documentation3 gives the following execution model and
name resolving rules. Variables in Python are resolved using the LEGB -rule, standing
for Local → Enclosing → Global → Built-in. These terms are defined as follows:

1. Local: a function definition

2. Enclosing: enclosing function definitions

3. Global: top-level of the executing script itself (also called module)

4. Built-in: names that are reserved by Python itself.

The following program code, will be used in this paragraph to briefly address the name
resolving strategy.

i = 0

class Foo:
i = 1

def bar():
i = 2
def baz():

return i

return(baz())

print(bar()) # >>> 2

print(i) # >>> 1

print(i) # >>> 0

In the example code the variable name i is used at three different places. In the global
namespace the value 0 is assigned; in line 4 in the namespace of the class Foo the value
1 is assigned; in line 7 in the local scope of the function bar the value 2 is assigned to
the name i.

3Python Execution Model: https://docs.python.org/3/reference/executionmodel.html

19

2 Methodology

The three print instructions at the end output three different values because the name
i is resolved from within different scopes.

Placement Function Definitions (funcdef) belong to the compound statements4 (if,
for, while, try, with, funcdef, classdef) of Python. This means that functions can
also be nested inside other functions (inner functions), that are only available in the
scope of the enclosing function and do not affect the rest of the program code.

By placing the function at the top of the scope of the transformed while loop the
function can only be called and only affects the code inside this very scope, exactly like
the while loop to be replaced.

2.1.4 Naming introduced variables

Due to the placement of the function definition, naming the function is also not raising
a big issue, because the name only has to be unique to the local scope of the function.
Variable names that are introduced to the code by the transformation algorithm, will
always be unique to the current enclosing scope, by checking for naming collisions with
already existing variable names in this scope. In case of a collision a universally unique
identifier (UUID) is appended to the variable name that should be used to further
guarantee uniqueness and avoid collisions.

4https://docs.python.org/3.3/reference/compound_stmts.html

20

2 Methodology

2.2 For-Loop Transformation
The for-loop in Python is to be thought of as a foreach loop in other languages, such as
Java. Python provides only one type of for-loop, iterating over so called iterator-objects.
An iterator-object can be retrieved for any arbitrary data structure class (container),
that implements the following two methods:

• __iter__(): return an iterator object of the container

• __next__(): get the next item from the container

A container, that implements these methods is also called iterable. Examples for iter-
ables are the builtin data sequence types like list, tuple or range objects.

Insa and Silva propose a methodology that can transform Java’s foreach loop. How-
ever to transform Python’s for loop another approach is followed. The assumption is
that any for loop can be expressed as a semantically equal while loop.

Figure 8: Blackbox that transforms any for loop into a semantically equal while loop

In figure 8 a desired model for a transformation of a for loop to a while loop is
illustrated. The necessary algorithm to do this transformation transform for loop is
currently a black box that will be peered inside soon.

Taking a look at the operation code (opcode) of an arbitrary Python for loop using
the disassembler module5 of Python, the CPython opcode of the for loop from fig. 8
can be analyzed. To be able to understand the opcode, the most relevant commands are
introduced in the following and it is discussed how they affect the program stack:

• SETUP_LOOP pushes a block for a loop onto the block stack. The block spans from
the current instruction with a size of delta bytes.

• GET_ITER implements TOS = iter(TOS) (TOS: top of stack).

5https://docs.python.org/3/library/dis.html

21

2 Methodology

• FOR_ITER needs TOS to be an iterator. Call its __next__() method. If this yields
a new value, push it on the stack (leaving the iterator below it). If the iterator
indicates it is exhausted TOS is popped, and the byte code counter is incremented
by delta.

• STORE_FAST stores TOS into the local co_varnames[var_num] (set of locally bound
variables).

Each line of the opcode is organized into columns. The first column is a reference to
the actual source code line number; the second column shows the byte-address (2 bytes
are used for each instruction); the third column holds the opcode-name; the fourth
column contains the argument of the instruction; and the resolved arguments are in the
fifth column (in parentheses).

For line 1 of the original source code, the generated opcode first initializes a block on
the stack for the loop (SETUP_LOOP, address 0) and then pushes the iterable to the stack
at address 2, which the GET_ITER instruction (address 4) transforms into an iterator
object, pushing it to the stack.

The FOR_ITER instruction (address 6) starts the execution of the for loop by checking
to see if there exists a next value in the iterator object; if so, it is bound to a variable
(STORE_FAST, address 8) before finally executing the loops body (The opcode for the loop
body is omitted, since it is not necessary to show the actual mechanism of a for loop).

After the last instruction inside the loop body JUMP_ABSOLUTE continues the loop at
the starting address (6). If the iterator object is exhausted FOR_ITER directly jumps to
address 12, where the loop block is popped off the stack.

1 0 SETUP_LOOP 12 (to 14)
2 LOAD_CONST 1
4 GET_ITER

>> 6 FOR_ITER 4 (to 12)
8 STORE_FAST 0

2 10 JUMP_ABSOLUTE 6
>> 12 POP_BLOCK

Figure 9: opcode of the for-loop of fig. ; numbers on the left indicate the line number in
the source code

There is actually a lot of work done implicitly behind the scenes (GET_ITER, FOR_ITER),
that could also be expressed explicitly in program code.

Analyzing the opcode of a for loop, yields us a flow-chart 10, that shows each indi-
vidual step of the execution of a for loop.

22

2 Methodology

Figure 10: flow-chart of both loop implementations given in figure 11

Having obtained a flow-chart to model the execution of a for loop, it is possible to
implement a while loop that is semantically equal (see, fig. 11). At first the iterable
<iter> is converted to an iterator-object and bound to a variable (here: iterator). In-
side an infinite while loop the call to the next function on the iterator-object (iterator)
and the binding of result to target_list is wrapped by a try block. As long as the
iterator-object is not exhausted the code inside

�� ��body can be executed, otherwise the
StopIteration exception is caught and the loop is exited directly (break).

Figure 11: for to while-loop transformation

23

2 Methodology

Similar to the while loop in Python the for loop has an else clause as well. The else
clause is entered only if the loops iterator is exhausted. In case the control-flow of the
loop execution is altered by break or continue the else clause will not be executed (see,
fig. 12).

Since the functionality of the else clause is analogous for both loops, this feature can
be addressed by carrying over the else clause of the for loop to the while loop.

Figure 12: control flow of Python’s for loop with an else clause

First transforming all for loops to equivalent while loops, the transformation rules for
while loops, discussed in section 2.1 can be used to transform all loops, consequently.

24

2 Methodology

2.3 Comprehension to For Loop Transformation
In Python comprehension allows to create new lists, sets and dictionaries of iterables in
a concise way. The comprehension syntax is syntactic sugar for the application of map(),
filter() and lambdas. However the comprehension syntax contains implicitly executed
for loops that should be transformed into an explicit implementation first, in order to
remove iteration, replacing it with tail-recursion. In the left box of figure 13 the syntax
of a list comprehension can be seen. It consists of an expression (<expr>) and at least
one for clause (orange box) together with zero or more if clauses (predicates; blue box),
all wrapped by square brackets (list constructor).

Figure 13: Transformation of list comprehension to for loop(s) [Fou18]

Multiple consecutive for clauses in the list comprehension syntax imply nested for
loops. Likewise multiple consecutive if clauses are nested as well. Thus, the list compre-
hension syntax can be transferred into a new function (comp()), returning the same list.
Therefore an empty list (tmp_list) is initialized first. As seen in figure 13 the nested
loops are built as follows: After the first for clause, every other if or for clause in the
list comprehension syntax creates a new nesting level in the explicit for loop. In the
most inner loop the expression (<expr>) is appended to the temporary list (tmp_list).
The list comprehension can then be replaced by a call to the newly created function
(comp()) [Fou18].
The transformation of sets or dictionaries can be done analogous to the list compre-

hension, that was shown in an exemplary way in this section.

25

2 Methodology

2.4 Loops in Generator Functions
Generators are a unique concept to Python. Defining a generator is the same as a func-
tion definition, except instead of a return statement a generator function needs to have
at least one yield statement. However, a generator function„ can have additional return
statements inside its definition, that will exit the execution of the generator function, as
normally.

A function that is defined in that way returns a generator object (or generator iter-
ator) when called. A generator iterator is very similar to an iterator object (see 2.2),
providing the __next__() and the __iter__() methods. In fact every generator is an
iterator.

As a result, generator functions are an easy way to create an iterator object. To define
a generator function, in most cases, loops are used to produce a sequence of values. In
figure 14 a generator function is defined that produces an endless stream of integers.

def endless():
i = 0
while True:

yield i
i += 1

Figure 14: Defining an infinite stream of integers, with a generator function

This loops, having a yield statement in it, can not be transformed with the method-
ology, that was presented in section 2. Generator functions are a special concept to
Python and require us to extend the transformation rules.
While the yield statement has to remain unchanged to provide the generator func-

tionality, the recursive
While the yield statement has to remain unchanged, to provide the generator func-

tionality, the recursive call to a generator function can not be done using a return
statement. Instead Python provides some special syntax for this case. To yield a value
from a recursive call (or delegate to a subgenerator) the yield from6 statement has to
be used.

Strictly following the transformation scheme, given in figure 3, but using yield from
to invoke the recursive call the generator function can be transformed, using recursion
as well (fig. 15).

It is not necessary in the case of a generator function to return anything (e.g. modified
variables), so we can omit the return statements.

6https://docs.python.org/3/reference/expressions.html#yieldexpr

26

2 Methodology

def endless():

def tail_rec(i):
yield i
i += 1
if True:

yield from tail_rec(i)

i = 0
if True:
result = tail_rec(i)
yield from result

Figure 15: Infinite stream of integers generator, defined with recursion

27

3 Implementation

3 Implementation
This section offers insights into implementing the transformation of all loops, with the
methodology given in section 2. At first fundamental knowledge about some Python
specifics, like the ast module (3.1) as well as the variable scope and lifetime (2.1.3)
is provided. To transform the code the abstract syntax tree (AST) of any valid input
Python source code is modified. The output of that transformation pipeline is also an
AST that does not contain iterative loops. The code-transformation consists of mainly
four steps that build a pipeline (3.2).

In section 3.3 every step of this transformation-pipeline, given in figure 24, is explained
in detail.

3.1 Python AST
Python offers a built-in module to programmatically inspect and modify the abstract
syntax tree (AST) of any Python source code.
We use the ast module to generate the AST of an input program code, apply changes

to the AST according to the transformation methodology (see sec. 2) and, as a last step,
convert the modified AST back to program code.

In the following we will introduce the most relevant AST nodes, along with its at-
tributes. Further information on the complete syntax grammar of the Python AST is
provided in the documentation7.

ast.Module

This node is the root of the AST. The ast.Module node has only one attribute (body),
which holds a list of nodes that build the program.

ast.Module(stmt* body)

Figure 16: ast.Module node with its attributes

ast.For

The ast.For node consists of the attributes target, iter, body and orelse. The at-
tribute target holds the variable name (or a tuple of variable names) that the next
value of the iterable (attribute iter) will be bound to. The attributes body and orelse
hold a list of statements.

ast.For(expr target, expr iter, stmt* body, stmt* orelse)

Figure 17: ast.For node with its attributes

7https://docs.python.org/3.6/library/ast.html

28

3 Implementation

ast.While

The ast.While node consists of the attributes test, body, and orelse. The attribute
test holds an expression that evaluates to a boolean. The attributes body and orelse
hold a list of statements.

ast.While(expr test, stmt* body, stmt* orelse)

Figure 18: ast.While node with its attributes

ast.If

The ast.If node consists of the attributes test, body, and orelse. The attribute test
holds an expression that evaluates to a boolean. The attributes body and orelse hold a
list of statements.

ast.If(expr test, stmt* body, stmt* orelse)

Figure 19: ast.If node with its attributes

ast.Try

The ast.Try node consists of the attributes body, handlers, orelse and finalbody.
The attribute test holds an expression that evaluates to a boolean. The attributes body
and orelse hold a list of statements.

ast.Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)

Figure 20: ast.Try node with its attributes

ast.Assign

The ast.Assign node consists of the attributes targets, and value. The attribute
targets holds a list of expressions. The attribute value contains a single expression.

ast.Assign(expr* targets, expr value)

Figure 21: ast.Assign node with its attributes

29

3 Implementation

ast.ListComp

The ast.ListComp node consists of the attributes targets, and value. The attribute
targets holds a list of expressions. The attribute value contains a single expression.

ast.ListComp(expr elt, comprehension* generators)

Figure 22: ast.ListComp node with its attributes

ast.FunctionDef

The ast.FunctionDef node consists of the attributes name, arguments,body,decorator_list,
and returns. The attribute name is an identifier. The attribute arguments contains a
list of arguments. The attribute body holds a list of statements. The attribute deco-
rator_list holds a list of expressions and the optional attribute returns contains an
expression.

ast.FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns)

Figure 23: ast.FunctionDef node with its attributes

30

3 Implementation

AST Traversal The built-in ast module provides some base classes to traverse, process
and modify the nodes of an AST. In this work the open source module astor8 is chosen,
publicly available on github under the 3-clause-BSD license.
The astor module offers a TreeWalk superclass, that builds on top of the ast module,

that allows to walk the AST in arbitrary fashion.
The astor.TreeWalk class can be subclassed to create a custom tree-walker. In a

subclass methods can be defined to process certain types of nodes (see sec. 3.1), either
before (pre) or after (post) visiting any child node.
In addition the astor module is able to generate Python source code from an AST.

3.2 Transformation Pipeline
To implement the iterative loop to tail recursive transformation methodology in Python
the builtin ast module is used, that gives us the possibility to get the AST of any
syntactically correct program code. Having the AST of the code it can be modified
according to the transformation rules (see, section 2).

The code transformation consists of the following three main steps, that can be catego-
rized into pre-processing steps and the actual transformation to tail recursive functions.
These steps need to be applied in sequence and build a transformation pipeline (fig. 24).

• Pre-processing

1 Transform comprehension to for loops

2 Transform for-loops to while-loops

3 Initialize variables used inside the loop

• Loop Transformation

4 Transform while loops to tail recursive functions

8https://github.com/berkerpeksag/astor

31

3 Implementation

Figure 24: Transformation pipeline; input is a Python-AST; output is a modified version
of the AST

32

3 Implementation

3.3 Transformation Steps
This section gives details on how each step of the transformation pipeline (see, fig. 24)
is implemented.

Notation

In the following the AST nodes and the attributes are used to be able to explain the
implementation. An AST node is denoted in the way described in section 3.1. The
dot-notation is used to name an attribute of a node. Meaning the test attribute of a
ast.While node is referenced as ast.While.test.

3.3.1 Preprocessing steps

3 Create scopes dictionary

To be able to introduce new variable names during the processing it has to be cer-
tain that this variable name is not already defined in the scope of the transformed loop.
As stated in section 2.1.3 a scope in Python can only be a node of the type ast.Module,
ast.ClassDef or ast.FunctionDef. Identifying the scope is done by traversing the AST
starting at the root (ast.Module) and building a dictionary, where the keys are node
instances (one of: ast.Module, ast.ClassDef or ast.FunctionDef) and the value is a set
of all child nodes. Every node of these three types creates a new key.

This method yields a dictionary where a nodes’ scope can easily be looked up by
searching the key of the set the node is contained in.

This step is done before the actual loop transformation happens in the steps 1○ and
2○, because the scope dictionary is not affected by the individual loop transformation
but changes after all for-loops have been replaced by while loops.

1© Transform List-, Set- and Dict-Comprehension

In Python comprehension allows to create new lists, sets and dictionaries of iterables
in a concise way. The comprehension syntax is syntactic sugar for the application of
map(), filter() and lambdas. However the comprehension syntax uses implicit for loops
(in map()) that must be transformed into an explicit implementation first, in order to
remove iteration, replacing it with tail-recursion.

33

3 Implementation

Figure 25: inspecting step 1 of the transformation pipeline

The processing of any ast.ListComp (ast) instance consists of the following steps:

(a) Get the node instance that defines the scope of the currently processed ast.For
node instance by checking the scopes dictionary, that is built in 3.

(b) Having the scope node, all instances of variable names (ast.Name) can be searched
to ascertain that newly generated names are unique to the current scope. Generate
a unique name for the function and the temporary list.

(c) create a new instance of an ast.FunctionDef node:

• ast.FunctionDef.name: set to the previously generated function name using
the prefix comp (comprehension).

• ast.FunctionDef.body:

34

3 Implementation

– initialize an empty list and assign it to the previously generated helper
variable name (using prefix tmp_list) used to temporarily store the list
values

– transform the ast.ListComp node to a ast.For instance:

∗ building the body from inside out: starting with the most inner node:
expression (ast.ListComp.elt); wrapping it inside a call to append
to the temporary helper list

∗ for each of the reversed list of generators (for clauses) and each
if clause contained in the reversed attribute ifs a corresponding
ast.For or ast.If node is wrapped around the body

∗ each resulting body is the body attribute of the next enclosing ast.For
or ast.If node.

• Insert the function definition built in (c) at the top of the enclosing parent
node. In case the parent node is an ast.Assign or ast.Call instance, the
function definition is placed at the top of the scope of the parent node.

(d) replace the currently processed ast.For instance with the newly created ast.While
instance

35

3 Implementation

2© For-to-While Loop Transformation

In this step the transformation rules to replace each for loop with a semantically equal
while loop (see, 2.2) are applied.

Therefore the AST is traversed, processing each instance of an ast.For node. For
nested for loops (i.e. other instances of ast.For nodes, that occur in the body or orelse
attribute) the order to access these nodes, is not important. Each instance is transformed
individually and is not dependent on other enclosing instances.

Figure 26: inspecting step 2 of the transformation pipeline

The processing of any ast.For instance consists of the following steps:

(a) Get the node instance that defines the scope of the currently processed ast.For
node instance by checking the scopes dictionary, that is built in 3.

36

3 Implementation

(b) Having the scope node, all instances of variable names (ast.Name) can be searched
and to ascertain that newly generated names are unique to the current scope.

(c) create a new instance of an ast.While node:

• generate a variable name (iterator) to store the iterator-object, the name
has to be unique to the local scope of the currently processed for loop

• ast.While.test: set to the boolean literal True (ast.NameConstant(value=True))

• ast.While.body: insert a new ast.Try node:

– ast.Try.body: insert a new variable definition (ast.Assign), where tar-
get is set to ast.For.target and the value attribute is set to a function
call to next()with the generated variable (iterator) as its argument

– ast.Try.body: append the body attribute of the ast.For node

– ast.Try.handlers: insert a handler (ast.ExceptHandler()) for the Sto-
pIteration exception and insert a break statement (ast.Break()) in the
body attribute.

• Insert a new variable definition (ast.Assign), where target is set to the
generated variable name and value is a function call to iter() with the
ast.For.iter attribute as its value. Place it in the enclosing node right
before the current for loop instance

(d) replace the currently processed ast.For instance with the newly created ast.While
instance

After these steps have been applied to every ast.For instance in the AST, only
ast.While instances will remain.

3© Initialize Variables used inside the loop

As it comes to variables there is an obvious difference between Python and Java. On
the one hand Java is a statically typed language where every variable name must be
bound to an an explicit type and an object whose type must match the declared type.
Additionally, once the variable name was bound to a type it must not change during the
execution time of a program.
In Python, on the other hand, variables are dynamically typed and unless the value is

Null it is only bound to an object whose type may change during execution time.

37

3 Implementation

bound to bound to

Name

is of

Object

must match

Type

Type

bound to

Name

is of

Object

Type

statically typed dynamically typed

Figure 27: Statically typed vs. dynamically typed variables

During the execution of a loop any variable that is used inside the body of the loop
may change its value or even its type as shown above. To keep track of these changes
in a recursive function, all variables, being stored inside the loop, must be provided to
the recursive function as arguments, so they can be modified and passed on to the next
recursive call.

Java, following the concept of statically typed variables, enforces that every variable
that may change in a loop-construct has to be declared beforehand, outside of the loop.
In Python though, variables can be declared directly inside the loop.
To replace the actual loop, with the caller (see, section 2.1) it has to be ensured that

every variable is known to the compiler at execution time of the first call to the tail-
recursive function. Therefore the variables that are not already known to the enclosing
scope of the loop have to be initialized, at the top of the scope by assigning None to it.

In figure 29 you can see an overview of the necessary actions to build an implementa-
tion of this step, being further described in the following:

(a) Get the node instance that defines the scope of the currently processed ast.For
node instance by checking the scopes dictionary, that is built in 3.

(b) collect all variable names: walk the AST starting at the currently processed
ast.While instance and processes every occurence of an ast.Name node. It is
checked if the ctx (context) attribute is set to ast.Store, meaning that the vari-
able name is stored inside of the loop. For every ast.Name node, that fulfills this
property, the ast.Name.id attribute is stored in a set.

(c) For every variable in this set, a new variable assignment (ast.Assign) is inserted,
where the target attribute is set to the constant Null (ast.NameConstant(value=Null)).
The insertion has to at the first position of the body of the enclosing scope element
.

38

3 Implementation

Figure 28: inspecting step 3 of the transformation pipeline

39

3 Implementation

2 Building a dictionary of all while loops

To be able to tell if a loop instance is nested inside another loop instance or if it is
the outermost loop instance, a dictionary that contains all while loop instances has to
built. This dictionary is built by traversing the AST starting at root (ast.Module) look-
ing for any node of type ast.While, which is set as key. A set is collected with every
child node of the key that is also an instance of an ast.While node as its value.

This step is only done once before the loop to tail-recursive function conversion.

Figure 29: inspecting step 2 of the transformation pipeline

40

3 Implementation

3.3.2 Loop transformation

4©While-Loop to Tail-Recursive Functions Transformation

At this stage of the transformation pipeline the AST is prepared to actually perform the
conversion of the loops to tail-recursive functions. The AST only contains instances of
ast.While nodes and the required variables are initialized before the loop code, so the
first recursive call can pass them as arguments.

Figure 30: inspecting step 4 of the transformation pipeline

41

3 Implementation

The conversion of while loops is separated into the following steps. The strategy for
multiple nested loops is to consecutively apply these steps to the most inner loop first:

(a) Find all return statements (ast.Return nodes) in the attributes of the currently
processed ast.While instance and replace them using the transformation rule pro-
posed in section 2.1.

(b) Get the node instance that defines the scope of the currently processed ast.For
node instance by checking the scopes dictionary, that is built in 3. The scopes
have not changed in step 2○ and therefore have not been recreated before step 3○.

(c) get all variable names (ast.Name instances) that are being stored (ast.Name.ctx
set to Store) inside of the loops body.

(d) with the help of the while loop dictionary, built in 2, it can be discovered if the
currently processed ast.While instance is nested or not, which determines the
caller; the caller either propagates its result to an enclosed function (nested loop)
or returns the result directly (outermost loop).

(e) all control-flow changing statements (see, 2.1) that occur inside the ast.While
loops body are collected.

(f) Building the tail-recursive function of the currently processed loop involves the
following steps:

• At first a new ast.FunctionDef node is created and a unique function name
is generated.

• The function arguments have to be all variables that are being stored inside
of the loop (while_vars).

• The body is built out of the original while-loop body (<while_body>) and
a recursive call. The recursive call is wrapped inside an ast.If node that
checks the loop condition (test=<while_cond>) first.

• After that an ast.Return node is appended to the body that returns the
control list (see, fig. 3) and the variables (<while_vars>).

(g) to build the caller new variable names (result and control) need to be introduced.
If they are already unique to the enclosing scope of the loop these names are used
directly, otherwise a unique identifier is appended to the variable name.

(h) Building the caller requires us to know the generated function name, the function
arguments (vars), the generated result and control variable names, if it is a nested
loop, the control statements and the scope, to know if the caller will be placed
inside a function definition or in the ast.Module node.

(i) For all the variables gathered in (c) a variable assignment (ast.Assign) is inserted,
using the result list.

42

3 Implementation

(j) In Python functions can be defined everywhere in the code. Now that the ast.FunctionDef
node is built, the function definition directly can directly be inserted into the par-
ent of the original while loop. Thus, the function is directly defined inside the
same scope from where it will be called.

(k) The last step is to simply replace the loops node instance (ast.While) with the
caller.

Example

The performed actions in each step of the transformation pipeline will be shown by
reference to the following code example implementing the algorithm to calculate the
Levenshtein distance [SM01]. An implementation9 of the Levenshtein distance algorithm
is given in figure 31 using two nested for loops.

def levenshtein(s1, s2):
if len(s1) < len(s2):

return levenshtein(s2, s1)

len(s1) >= len(s2)
if len(s2) == 0:

return len(s1)

previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):

current_row = [i + 1]
for j, c2 in enumerate(s2):

insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and
current_row are one character
longer

deletions = current_row[j] + 1 # than s2
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))

previous_row = current_row

return previous_row[-1]

Figure 31: Implementation of the Levenshtein distance algorithm

(1) The first step of the transformation pipeline 1○ would transform comprehension
into explicit for loop(s). It does not affect the program code in this example, since
this implementation of the Levenshtein distance does not contain any list-, set- or
dict-comprehension.

(2) The second step 2○ removes all for loops, replacing them with equivalent while
loops. The code after this step is shown in figure 32.

9https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#Python

43

3 Implementation

def levenshtein(s1, s2):
if len(s1) < len(s2):

return levenshtein(s2, s1)
if len(s2) == 0:

return len(s1)
previous_row = range(len(s2) + 1)
iterator = iter(enumerate(s1))
while True:

try:
i, c1 = next(iterator)
current_row = [i + 1]
iterator = iter(enumerate(s2))
while True:

try:
j, c2 = next(iterator)
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions,

substitutions))
except StopIteration:

break
previous_row = current_row

except StopIteration:
break

return previous_row[-1]

Figure 32: Levenshtein distance algorithm after transformation step 2○ of the transfor-
mation pipeline

(3) Transformation step 3○ prepares the while loops to be transformed into tail-
recursive functions by initializing the used variables in the loop body and condition
at the top of the scope of the loop.

44

3 Implementation

def levenshtein(s1, s2):
c2 = None
i = None
c1 = None
previous_row = None
current_row = None
j = None
deletions = None
substitutions = None
insertions = None
if len(s1) < len(s2):

return levenshtein(s2, s1)
if len(s2) == 0:

return len(s1)
previous_row = range(len(s2) + 1)
iterator = iter(enumerate(s1))
while True:

try:
i, c1 = next(iterator)
current_row = [i + 1]
iterator = iter(enumerate(s2))
while True:

try:
j, c2 = next(iterator)
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions,

substitutions))
except StopIteration:

break
previous_row = current_row

except StopIteration:
break

return previous_row[-1]

Figure 33: Levenshtein distance algorithm after transformation step 3○ of the transfor-
mation pipeline

(4) Transformation step 4○ removes the while loop, replacing it with the caller (see,
sec. 2.1) and inserts a corresponding tail-recursive function at the top of the parent
element containing the loop.

45

3 Implementation

def levenshtein(s1, s2):
def loop1(i, c2, c1, deletions,

insertions, j, substitutions, current_row, previous_row):
try:

try:
def loop0(c2, deletions, insertions, j, substitutions):

try:
try:

j, c2 = next(iterator)
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions,

substitutions))
except StopIteration:

return [[None], c2, deletions, insertions, j,
substitutions]

except BaseException as exc:
return [[’raise’, exc], c2, deletions, insertions,

j, substitutions]
if True:

return loop0(c2, deletions, insertions, j,
substitutions)

return [[None], c2, deletions, insertions, j, substitutions
]

i, c1 = next(iterator0)
current_row = [i + 1]
iterator = iter(enumerate(s2))
if True:

result = loop0(c2, deletions, insertions, j,
substitutions)

control = result[0]
if control[0] is not None:

if control[0] == ’raise’:
raise control[1]

c2 = result[1]
deletions = result[2]
insertions = result[3]
j = result[4]
substitutions = result[5]

previous_row = current_row
except StopIteration:

return [[None], i, c2, c1, deletions, insertions, j,
substitutions, current_row, previous_row]

except BaseException as exc:
return [[’raise’, exc], i, c2,

c1, deletions, insertions, j, substitutions, current_row,
previous_row]

if True:
return loop1(i, c2, c1,

deletions, insertions, j, substitutions, current_row,
previous_row)

return [[None], i, c2, c1, deletions, insertions, j, substitutions,
current_row, previous_row]

continues on next page

46

3 Implementation

previous_row = None
current_row = None
substitutions = None
j = None
insertions = None
deletions = None
c1 = None
c2 = None
i = None
if len(s1) < len(s2):

return levenshtein(s2, s1)
if len(s2) == 0:

return len(s1)
previous_row = range(len(s2) + 1)
iterator0 = iter(enumerate(s1))
if True:

result1 = (
loop1(i, c2, c1, deletions,
insertions, j, substitutions, current_row, previous_row))

control1 = (
result1[0])

if control1[0] is not None:
if control1[0] == ’return’:

return control1[1]
if control1[0] == ’raise’:

raise control1[1]
i = result1[1]
c2 = result1[2]
c1 = result1[3]
deletions = result1[4]
insertions = result1[5]
j = result1[6]
substitutions = result1[7]
current_row = result1[8]
previous_row = result1[9]

return previous_row[-1]

Figure 34: Levenshtein distance algorithm after transformation step 4○ of the transfor-
mation pipeline

47

4 Related Work

4 Related Work
Considering the close relationship between iteration and tail recursion, there exists a
lot of work studying the conversion from on to another. Due to the fact that, in gen-
eral, compilers have optimized code for iteration the transformation from recursion to
iteration has been of higher interest and is therefore better covered than vice versa.

The Transformation from iteration to tail recursion is also of big interest in the trans-
formation of recursion to tail recursion. Even if recursion and tail recursion share the
same intuition, they have fundamental differences and the transformation is not trivial
at all. For this purpose a concept called incrementalization can be used to transform
recursive functions to loops first [Liu00], which then can be transformed to tail-recursive
functions.

Besides the method that is covered in this thesis, there exist some other approaches
to transform iteration to recursion. Currently, as already stated in the introduction
(sec. 1.1), transforming iterative loops to tail recursive functions is also ongoing work
of the chair for Database Systems Research (University of Tuebingen). One interesting
approach is the method of Yi et al., who have done research on the performance of
recursion in multi-level memory hierarchies. Therefore they came up with a method
to transform loops to recursion, using a transformation technique called iteration space
slicing (see, [PR97]). Iteration space slicing applies transitive dependence analysis on
the dependence graph to compute the instances of a particular statement that must
precede or follow a given set of instances of another statement. Yi et al. stated that this
is a powerful technique, which can contribute to compiler optimization [YAK00].

The method of Insa and Silva covered in this thesis, however, acts on the implementa-
tion level and follows transformation rules that involve building a recursive call around
the original loop code, that is wrapped into a new function, the actual loop-code is
replaced by a recursive function.

48

5 Conclusion

5 Conclusion
Automatic transformation of iterative to tail recursive functions is a topic from high in-
terest in programming language theory. Having an automated translator from iterative
loops to tail recursion can be beneficial for several purposes. It enables that algorithms
can be written in their most intuitive way, may it be declarative or recursive. An-
other use case for this transformation is a technique for declarative debugging, where
transforming loops into tail recursive functions can improve the interaction between the
programmer and the debugger. This technique has been published by Insa and Silva in
2012 [IST12]. The groundwork for this thesis is another article of Insa and Silva [IS14],
in which they provide transformation rules for automatic loop transformation using Java
programming language.

This thesis had the goal to prove their claim, that the given transformation rules are
general enough to be adapted to other programming languages and to provide insights
to the implementation process of the given methodology.

The outcome of this thesis is a modified methodology, which adapts to the specifics
of the Python programming language. To verify that the implementation applies the
methodology correctly the implementation comes with multiple unit test cases. Also it
is possible to transform the implementation by self-application and to successfully apply
the unit tests to the transformed implementation.

Additionally it was possible to provide new transformation rules for the transformation
of concepts, that are unique to Python, such as generator functions and list-, set- and
dict-comprehension.

Alongside with the methodology comes an implementation of automatic loop trans-
formation, with a description that may serve as a guide for the implementation in any
other multi-paradigm programming language.

Optimizations The implementation of automatic loop transformation that has been
developed in the course of this thesis is able to translate the whole Python programming
language and output semantically equivalent program code for any input program code.
However the generated output code is not optimal and leaves scope for improvement
regarding the following points:

• The translation of for to while loops creates a lot of unnecessary code in the caller
(see, sec. 2.2). The generated loop condition in this case is just the boolean value
True, producing a lot of if True: clauses in the code. They may be completely
removed from the code by replacing them with the statements in their body.

• In step 3 of the transformation pipeline, all variable names inside the while loops
body and condition are initialized (assigning None at the top of the scope). This
step can be improved by only initializing those variables, not being assigned any
value before the while loop.

49

5 Conclusion

• Executing the generated Python source code, may lead to a stack overflow, since
Python does not implement tail-call optimization. However this is not a drawback
in perspective to this thesis, because the main focus was the methodology and to
give insights to the implementation.

Future Work Given the proposed transformation methodology (sec. 2) and the changes
and extensions to adapt to Python programming language and the implementation of a
working automatic loop transformation in Python opens some new topics that can be
investigated in the future.

The fact that the current official CPython implementation does not implement tail
call optimization (TCO)10 leads to a worse performance of the generated code not using
loops. Hence it would be interesting to implement automatic loop transformation in
another multi-paradigm language that supports TCO to see how performance is actually
affected in a better suiting environment that Python offers for this use case.

10Guido van Rossum (author of Python) gives a comprehensive argumentation in a blogpost: http:
//neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html

50

References

References
[Fil94] Andrzej Filinski. “Recursion from Iteration”. In: Lisp and Symbolic Compu-

tation. 1994, pp. 11–38.

[PR97] William Pugh and Evan Rosser. “Iteration Space Slicing and Its Applica-
tion to Communication Optimization”. In: Proceedings of the 11th Interna-
tional Conference on Supercomputing. ICS ’97. Vienna, Austria: ACM, 1997,
pp. 221–228. isbn: 0-89791-902-5. doi: 10.1145/263580.263637. url: http:
//doi.acm.org/10.1145/263580.263637.

[Liu00] Yanhong A Liu. “Efficiency by incrementalization: An introduction”. In: Higher-
Order and Symbolic Computation 13.4 (2000), pp. 289–313.

[YAK00] Qing Yi, Vikram Adve, and Ken Kennedy. “Transforming Loops to Recur-
sion for Multi-level Memory Hierarchies”. In: Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Implementa-
tion. PLDI ’00. Vancouver, British Columbia, Canada: ACM, 2000, pp. 169–
181. isbn: 1-58113-199-2. doi: 10.1145/349299.349323. url: http://doi.
acm.org/10.1145/349299.349323.

[SM01] R William Soukoreff and I Scott MacKenzie. “Measuring errors in text en-
try tasks: an application of the Levenshtein string distance statistic”. In:
CHI’01 extended abstracts on Human factors in computing systems. ACM.
2001, pp. 319–320.

[IST12] David Insa, Josep Silva, and César Tomás. “Enhancing declarative debugging
with loop expansion and tree compression”. In: International Symposium on
Logic-Based Program Synthesis and Transformation. Springer. 2012, pp. 71–
88.

[IS14] David Insa and Josep Silva. “Automatic Transformation of Iterative Loops
into Recursive Methods”. In: CoRR abs/1410.4956 (2014).

[Fou18] Python Software Foundation. Python 3.6.5 documentation, List Comprehen-
sion. June 2018. url: https://docs.python.org/3/tutorial/datastructures.
html#list-comprehensions.

51

Appendix

Using of the Python Implementation
The implementation of Automatic Transformation of Iterative to Tail-Recursive Func-
tions in Python can be found in the project root folder named i2r_python, alongside
with that comes a detailed documentation in the docs folder. After setting up the Python
environment according to the documentation, the tool is ready to be used.

Here are the basic commands to use the implementation in a tool that is able to
convert a complete project, creating a copy of the project in another location by using
command line:

Creating a copy of the project on the same directory level with the suffix _tr:
>>> itor_dir.py -d <project-root>

Creating a copy of the project on at target-root:
>>> itor_dir.py -d <project-root> -t <target-root>

Unit Testing the Implementation
The correctness of the implementation is verified by unit tests that can be invoked
directly in the project root by using the pytest testing tools. Using the pytest command:
>>> pytest [-vv] [--capture=sys]

References

Erklärung
Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht habe.

Tübingen, den 25.07.2018

53

