
University Of Tübingen SQL Is A Programming Language

Distance-Vector Routing With SQL

Alexej Onken

27.01.2023

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 1 / 35

Introduction First Little Glimpse Into The Problem

Motivating Example

Ellipse Ellipse

What is the fastest path from X to Y via neighbour Vi?

Y

V1

V2X Router Network

Vn

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 2 / 35

Introduction First Little Glimpse Into The Problem

Motivating Example

Ellipse EllipseY

V1

V2X Router Network

Vn

dX (Y) = minV {c(X ,V)︸ ︷︷ ︸
neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 3 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

Given a router network consisting of routing tables of each node

Node A’s routing table.

7

1

8

1

2

2

TO

AVIA B C D E

B 7 - - -

C - - - -

D - - - -

E - - - 1

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 4 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

Distance-Vector Routing is a dynamic protocol from network technology

.Initial configuration.

7

1

8

1

2

2

TO

FROM A B C D E

A 0 7 - - 1

B 7 0 1 - 8

C - 1 0 2 -

D - - 2 0 2

E 1 8 - 2 0

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 5 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

Bellman-Ford in an undirected graph without negative edge weights!

↪→ dX (Y) = minV {c(X ,V) + dV (Y)}

7

1

8

1

2

2

TO

FROM A B C D E

A 0 7 - - 1

B 7 0 1 - 8

C - 1 0 2 -

D - - 2 0 2

E 1 8 - 2 0

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 6 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

Calculate shortest paths from each node Xi to each other node Yi !

7

1

8

1

2

2

TO

FROM A B C D E

A 0 7 - - 1

B 7 0 1 - 8

C - 1 0 2 -

D - - 2 0 2

E 1 8 - 2 0

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 7 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

Works on the principle of “tell your neighbours how you see the world“

7

1

8

1

2

2

TO

FROM A B C D E

A 0 7 - - 1

B 7 0 1 - 8

C - 1 0 2 -

D - - 2 0 2

E 1 8 - 2 0

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 8 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

B communicates its current distance vector to neighbours A, C and E

7

1

8

1

2

2

TO

FROM A B C D E

A 0 7 8 - 1

B 7 0 1 - 8

C 8 1 0 2 9

D - - 2 0 2

E 1 8 9 2 0

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 9 / 35

Introduction First Little Glimpse Into The Problem

What Are We Dealing With?

CB

A

DE

...update distance vectors of all routers in the network until convergence!

7

1

8

1

2

2

TO

FROM A B C D E

A 0 6 5 3 1

B 6 0 1 3 5

C 5 1 0 2 4

D 3 3 2 0 2

E 1 5 4 2 0

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 10 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)
Perform a recursive query on a given graph
Explore all possible paths from a node
Cut off non-lucrative paths using window functions
Make sure that no cycles are created
Keep track of the summed edge costs
dX (Y) = minV {c(X ,V)︸ ︷︷ ︸

neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 11 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)

2 Perform a recursive query on a given graph
Explore all possible paths from a node
Cut off non-lucrative paths using window functions
Make sure that no cycles are created
Keep track of the summed edge costs
dX (Y) = minV {c(X ,V)︸ ︷︷ ︸

neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 12 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)

2 Perform a recursive query on a given graph

3 Explore all possible paths from a node
Cut off non-lucrative paths using window functions
Make sure that no cycles are created
Keep track of the summed edge costs
dX (Y) = minV {c(X ,V)︸ ︷︷ ︸

neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 13 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)

2 Perform a recursive query on a given graph

3 Explore all possible paths from a node

4 Cut off non-lucrative paths using window functions ,
Make sure that no cycles are created
Keep track of the summed edge costs
dX (Y) = minV {c(X ,V)︸ ︷︷ ︸

neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 14 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)

2 Perform a recursive query on a given graph

3 Explore all possible paths from a node

4 Cut off non-lucrative paths using window functions ,
5 Make sure that no cycles are created

Keep track of the summed edge costs
dX (Y) = minV {c(X ,V)︸ ︷︷ ︸

neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 15 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)

2 Perform a recursive query on a given graph

3 Explore all possible paths from a node

4 Cut off non-lucrative paths using window functions ,
5 Make sure that no cycles are created

6 Keep track of the summed edge costs
dX (Y) = minV {c(X ,V)︸ ︷︷ ︸

neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 16 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

1 Schema: graph (from, to, via, cost)

2 Perform a recursive query on a given graph

3 Explore all possible paths from a node

4 Cut off non-lucrative paths using window functions ,
5 Make sure that no cycles are created

6 Keep track of the summed edge costs

7 dX (Y) = minV {c(X ,V)︸ ︷︷ ︸
neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

step 1step 2

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 17 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

Sample input table:

Routing tables A, B, C, D

C

BA

D

3

23 2

5

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 18 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

FROM B TO D VIA A
0

1

2

3

Cut unnecessary paths with branch and bound:

→ 3 (initial cost)B VIA A

B

A

C

23 S

3

C

A

23 S

D

5

2

3

C

A

23 S

B

A

3 Q

C

S 2

2

D

5

23

C

BA

D

3

23 2

5

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 19 / 35

Implementation with SQL CTEs

Plan Of Attack With SQL

FROM B TO D VIA A
0

1

2

3

Do branch and bound for all FROM Xi TO Yi VIA Vi

→ 3 (initial cost)B VIA A

B

A

C

23

3

C

A

23

D

5

2

3

C

A

23

B

A

3

C

2

2

D

5

23

C

BA

D

3

23 2

5

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 20 / 35

Implementation with SQL CTEs

Non-Recursive Term

Copy those 3 columns︸ ︷︷ ︸ 123456 Finished iff to = via︸ ︷︷ ︸
from to via cost next track total cost b & b

A B B 3 {A,B,FINISHED} 3 3

A B C 23 {A,C} 23 Inf

A C C 23 {A,C, FINISHED} 23 23

A D B 3 {A,B} 3 Inf

A D C 23 {A,C} 23 Inf

...
...

...
...

...
...

...

D A C 5 {D,C} 5 Inf

D B C 5 {D,C} 5 Inf

D C C 5 {D,C,FINISHED} 5 5

This way we know the start and destination of the track during the recursion steps

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 21 / 35

Implementation with SQL CTEs

Non-Recursive Term
1 CREATE OR REPLACE FUNCTION array_smallest(anyarray) RETURNS anyelement

2 LANGUAGE SQL AS $$

3 SELECT min(elements) FROM unnest($1) elements

4 $$;

5
6 WITH RECURSIVE exploration as (

7 SELECT

8 d.origin as initialization, --from (static)

9 d.destination as final_destination, --to (static)

10 d.via as first_stopover, --via (static)

11 d.origin, --from (dynamic)

12 d.destination, --to (dynamic)

13 d.via, --via (dynamic)

14 e.cost as cost_next_hop,

15 CASE

16 WHEN d.destination = d.via

17 THEN array[d.origin] || array[d.via] || array['FINISHED']::VARCHAR[]

18 ELSE array[d.origin] || array[d.via] END as track,

19 e.cost as total_cost,

20 CASE

21 WHEN d.destination = d.via

22 THEN d.cost --initialize upper bounds

23 ELSE 'infinity' END as branch_and_bound

24 FROM graph as d, graph as e

25 WHERE d.origin = e.origin AND d.via = e.via AND e.destination = e.via --look at neighbour cost only

26
27 UNION ALL

28
29 ...

30

dX (Y) = minV {c(X ,V)︸ ︷︷ ︸
neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Bellman-Ford perspective:

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 22 / 35

Implementation with SQL CTEs

Recursive Term

Recursion depth: 0 FROM A TO B VIA E (Non-Recursive Term)

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 23 / 35

Implementation with SQL CTEs

Recursive Term

Recursion depth: 1 FROM A TO B VIA E

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 24 / 35

Implementation with SQL CTEs

Recursive Term

Recursion depth: 2 FROM A TO B VIA E

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 25 / 35

Implementation with SQL CTEs

Recursive Term

Recursion depth: 2 FROM A TO B VIA E

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 26 / 35

Implementation with SQL CTEs

Recursive Term

Recursion depth: 2 FROM A TO B VIA E

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 27 / 35

Implementation with SQL CTEs

Recursive Term

Recursion depth: 3 FROM A TO B VIA E

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 28 / 35

Implementation with SQL CTEs

Recursive Term

Recursion End: The most cost-effective path wins

from to via cost next track total cost b & b

A B E 1 {A,E} 1 Inf

E D D 2 {A,E,D} 3 9

E C C 5 {A,E,C} 6 9

E B B 8 {A,E,B,FINISHED} 9 9

E A A 1 {A,E,A} 2 9

A B B 7 {A,E,A,B,FINISHED} 9 7

D C C 2 {A,E,D,C} 5 7

C D D 2 {A,E,C,D} 8 7

C B B 1 {A,E,C,B,FINISHED} 7 7

C B B 1 {A,E,D,C,B,FINISHED} 6 6

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 29 / 35

Implementation with SQL CTEs

Recursive Term
1 ...

2
3 UNION ALL

4
5 SELECT

6 e.initialization,

7 e.final_destination,

8 e.first_stopover,

9 d.origin,

10 d.destination,

11 d.via,

12 d.cost,

13 CASE

14 WHEN e.final_destination = d.via

15 THEN e.track || array[d.via, 'FINISHED']::VARCHAR[]

16 ELSE e.track || array[d.via] END as track,

17 e.total_cost+d.cost as total_cost,

18 array_smallest(array[e.branch_and_bound]::float[] ||

19 array[min(CASE WHEN e.final_destination = d.via

20 THEN e.total_cost+d.cost

21 ELSE 'infinity' END) over win]::float[]) as branch_and_bound

22 FROM exploration as e, graph as d

23 WHERE e.via = d.origin AND

24 d.destination = d.via AND

25 'FINISHED' <> ALL(e.track) AND

26 (SELECT cardinality(array_positions(e.track[2:],d.via)) < 1) AND

27 e.total_cost+d.cost <= e.branch_and_bound

28 WINDOW win as (PARTITION BY e.initialization, e.final_destination, e.first_stopover

29 ORDER BY e.total_cost RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

30)

31

ü

dX (Y) = minV {c(X ,V)︸ ︷︷ ︸
neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

Bellman-Ford perspective:

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 30 / 35

Implementation with SQL CTEs

Recursive Term

32 SELECT

33
34 .

35 .

36 .

37
38 array_smallest(array[e.branch_and_bound]::float[] ||

39 array[min(CASE WHEN e.final_destination = d.via --min[b_and_b(t-1),b_and_b(t)]

40 THEN e.total_cost+d.cost --across finished paths only

41 ELSE 'infinity' END) over win]::float[])

42 as branch_and_bound

43 FROM exploration as e, graph as d

44 WHERE e.via = d.origin AND --link last via with new origin

45 d.destination = d.via AND --look one step ahead

46 'FINISHED' <> ALL(s.track) AND --only unfinished paths

47 (SELECT cardinality(array_positions(e.track[2:],d.via)) < 1) AND --recognize loops

48 e.total_cost+d.cost <= s.branch_and_bound --do not violate upper bound

49 WINDOW win as (PARTITION BY e.initialization,

50 e.final_destination, --define window function

51 e.first_stopover --partitions:

52 ORDER BY s.total_cost --FROM X TO Y VIA V

53 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 31 / 35

Implementation with SQL CTEs

After recursion...

1 SELECT

2 d.initialization, --from

3 d.final_destination, --to

4 d.minimal_cost, --min cost d(x_i,y_i)

5 e.track --protocol of the itinerary

6 FROM

7 (SELECT e.initialization,

8 e.final_destination,

9 e.first_stopover,

10 min(e.total_cost) as minimal_cost

11 FROM exploration as e

12 WHERE 'FINISHED' = e.track[array_upper(e.track,1)]

13 GROUP BY e.initialization, e.final_destination

14) as d, exploration as e

15 WHERE d.initialization = e.initialization AND

16 d.final_destination = s.final_destination AND

17 e.total_cost = d.minimal_cost AND

18 'FINISHED' = e.track[array_upper(s.track,1)]

19 ORDER BY d.initialization, d.final_destination;

Find path over minimum neighbour VIA Vi for all FROM Xi TO Yi

From recursive CTE find:

dX (Y) = minV {c(X ,V)︸ ︷︷ ︸
neighbour V

+ dV (Y)}︸ ︷︷ ︸
recursive part

FROM Xi TO Yi VIA V1 COST C1

FROM Xi TO Yi VIA V2 COST C2

FROM Xi TO Yi VIA V2 COST C1

FROM Xi TO Yi VIA Vn COST Cn

min {c1, c2, ... , cn} ∀ Xi, Yi

· · · · · · · · · · · ·

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 32 / 35

Implementation with SQL CTEs

Live Demo With PostgreSQL

C

BA

D

Final output:
3

23 2

5

from to min cost track

A B 3 {A,B,FINISHED}
A C 5 {A,B,C,FINISHED}
A D 10 {A,B,C,D,FINISHED}
B A 3 {B,A,FINISHED}
B C 2 {B,C,FINISHED}
B D 7 {B,C,D,FINISHED}
C A 5 {C,B,A,FINISHED}
C B 2 {C,B,FINISHED}
C D 5 {C,D,FINISHED}
D A 10 {D,C,B,A,FINISHED}
D B 7 {D,C,B,FINISHED}
D C 5 {D,C,FINISHED}

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 33 / 35

Implementation with SQL CTEs

Live Demo With PostgreSQL

C B

A

D E

Final output:

7

1

8

1

2

2

from to min cost track

A B 6 {A,E,D,C,B,FINISHED}
A C 5 {A,E,D,C,FINISHED}
A D 3 {A,E,D,FINISHED}
A E 1 {A,E,FINISHED}
B A 6 {B,C,D,E,A,FINISHED}
B C 1 {B,C,FINISHED}
B D 3 {B,C,D,FINISHED}
B E 5 {B,C,D,E,FINISHED}
C A 5 {C,D,E,A,FINISHED}
C B 1 {C,B,FINISHED}
C D 2 {C,D,FINISHED}
C E 4 {C,D,E,FINISHED}
D A 3 {D,E,A,FINISHED}
D B 3 {D,C,B,FINISHED}
D C 2 {D,C,FINISHED}
D E 2 {D,E,FINISHED}
E A 1 {E,A,FINISHED}
E B 5 {E,D,C,B,FINISHED}
E C 4 {E,D,C,FINISHED}
E D 2 {E,D,FINISHED}

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 34 / 35

Implementation with SQL CTEs

Any Questions? ,

Key takaways:

Perform a recursive query on a given graph

Keep track of the summed edge costs

Explore lucrative paths only:
Build in cycle detections & upper bounds

Alexej Onken Distance-Vector Routing With SQL 27.01.2023 35 / 35

	University Of Tübingen
	SQL Is A Programming Language

	Introduction
	First Little Glimpse Into The Problem
	What exactly are we dealing with?
	What makes this particular problem so challenging?
	What kind of inputs do we feed our algorithm with?
	Bellman–Ford Algorithm

	Implementation with SQL
	CTEs

