
Distance-Vector Routing With SQL
Using recursive CTEs to solve the Distance-Vector Problem

Alexej Onken
alexej.onken@student.uni-tuebingen.de

Eberhard Karls Universität
Tübingen, Baden-Württemberg, Germany

ABSTRACT
"Recursive queries are useful for working with data that is organized in
a hierarchical or tree-like manner", that’s how the official PostgreSQL
documentation similarly promotes the use of recursive queries [2].
In this article, we explore the solution of Distance-Vector Routing
with SQL and compare it with the established method, which em-
ploys the Bellman-Ford algorithm. The Distance-Vector algorithm
aims to calculate the shortest path from each node to every other
node by having each router use its routing table to communicate
exclusively with its immediate neighbours. We study the solution
of the Distance-Vector problem using a recursive CTE (Common
Table Expression) that filters exploding path discoveries through
appropriate upper bounds and cycle detections to avoid exponential
run times in certain cases. This approach is scrutinized in compari-
son with the established method that performs periodic updates in
routing tables. Here, the implementation of the recursive CTE and
the accompanying SQL script are explained in detail. We then in-
vestigate whether using recursive CTE with SQL can be practically
useful in solving the Distance-Vector Routing problem.

KEYWORDS
SQL, Distance-Vector Routing, recursive CTEs, Bellman-Ford algo-
rithm, routing tables

1 INTRODUCTION
In network research, the Distance-Vector Routing protocol is used
to determine shortest paths from any node to another node [4].
It is also called a dynamic protocol as it can compute new routes
independently in the event of changes in the edge weights between
nodes [4]. The conventional Bellman-Ford algorithm is used to
solve this problem. Since the data of each router is already available
in tabular form, a solution approach using recursive CTEs is found
in this article. Recursive CTEs are a special case of CTEs (temporary
tables) that allow for self-referencing and iterative querying. [2]
A recursive CTE allows iterative execution of a custom SQL query,
involving four tables in the process: Union Table (UT), Intermedi-
ate Table (IT), Work Table (WT), and Hash Table (HT), with the
keywords UNION and UNION ALL governing the combination of
results. The EXPLAIN ANALYZE command reveals insights into the
query plan and the roles of WT, IT (not explicitly), and UT. UT
holds all records from the initial query (non-recursive part) and
the recursive query. IT temporarily stores results during iterations,
and WT is utilized to execute the recursive query. HT is used to

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.

prevent duplicates when using UNION and is omitted with UNION
ALL (our case). The process unfolds as follows: First, the initial
query results are stored in WT and UT. The recursive query is
executed using WT, and the results are stored in IT and UT. WT is
reset, and IT’s contents are copied into WT before resetting IT. This
process iterates until no new records are added. The recursive CTE
implements an iteration by working incrementally and referencing
itself to access values from previous iterations. This streamlines the
process of traversing a graph, consolidating it into a single, easily
readable query. Upon recursive CTE convergence, desired solutions
can be obtained through a separate query.
The SQL script is made using PostgreSQL, a free open-source Rela-
tional Database-Management-System (RDBMS). The utilization of
PostgreSQL in conjunction with the capabilities of Turing complete-
ness enables smooth data integration, filtering and organization
in tables. PostgreSQL adheres to the latest SQL standards and also
provides advanced features like the capability to execute recursive
queries as well as window functions, which are crucial components
of the SQL script in this implementation.
In this article, we outline the specific PostgreSQL script employed
in this approach and evaluate its time complexity in comparison to
the established Bellman-Ford method. Additionally, we will delve
deeper into the Branch-and-Bound method which helps to mini-
mize the search space being examined. This technique minimizes
the search space by trimming unnecessary branches and constantly
establishing new milestones of the explored paths during each re-
cursion step. Our analysis aims to assess the feasibility of using
recursive CTEs to solve Distance-Vector Routing problems, and to
compare its effectiveness to the traditional Bellman-Ford algorithm.

2 DISTANCE-VECTOR ROUTINGWITH
BELLMAN-FORD

The Distance-Vector Routing algorithm is a decentralized network
protocol that collects and forwards information about the shortest
paths from source to destination nodes. Each node can be consid-
ered as a router with a routing table that stores known costs to each
other destination node. The network protocol operates based on the
principle of exchanging routing information between neighbour-
ing routers. This involves each router periodically transmitting its
own routing table to its neighbours, while simultaneously receiving
routing tables from its neighbours.
The guiding principle behind this protocol can be expressed as, "Tell
your neighbours how you see the network world". In Figure 1 and
Figure 2, an example graph 𝐺1 is presented [5], displaying the pre-
liminary routing table associated with node 𝐴. The Bellman-Ford
algorithm allows the router to update its own routing table based
on the routing tables received from its immediate neighbours, so

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Alexej Onken

Figure 1: Illustrative graph 𝐺1

Figure 2: Node A’s routing table

that all edges can be relaxed in each iteration if a shorter distance
to a destination router is discovered. Upon successful completion
of the algorithm, the shortest paths from each source to their corre-
sponding destinations are stored in their respective routing tables.
However, the Bellman-Ford algorithm also has some drawbacks. If
a connection breaks down or a new router is added, new informa-
tion in the network can only spread slowly, as routers must wait
for updated routing tables to be exchanged with their respective
neighbours, resulting in suboptimal routes in the meantime. Rout-
ing loops can also occur when routers send packets with outdated
information, leading to delays and congestion [3].
Let 𝐺 = (𝑁, 𝐸) be an undirected, connected graph where 𝑁 repre-
sents the set of nodes, and 𝐸 represents the set of edges. Let 𝑑𝑋 (𝑌)
represent the shortest path distance between nodes 𝑋 and 𝑌 , where
𝑋,𝑌 ∈ 𝑁 and all edge weights in 𝐸 are non-negative. Each node
𝑋 ∈ 𝑁 can be considered as a router, which has its own routing

Figure 3: Optimal shortest paths

table. Each routing table in its simplest state only possesses knowl-
edge about its direct neighbours 𝑉 ∈ 𝑁 , and the cost 𝑐 associated
with reaching those neighbours. In each iteration, every router
sends its own routing table to its neighbours, who in turn update
their routing tables based on the received information. Specifically,
for each node 𝑋 ∈ 𝑁 , its routing table is updated according to the
Bellman-Ford Equation:

𝑑𝑋 (𝑌) = min
𝑉

𝑐 (𝑋,𝑉) + 𝑑𝑉 (𝑌) (1)

where 𝑐 (𝑋,𝑉) is the cost of the edge between nodes 𝑋 and 𝑉 , and
𝑑𝑉 (𝑌) is the shortest path distance from node 𝑉 to node 𝑌 as cal-
culated by its own routing table.

Figure 4: Optimal shortest paths

The Bellman-Ford Equation serves as a guide for updating the rout-
ing tables in each iteration. After sufficient iterations, the shortest
path distances in each routing table will converge to their true val-
ues. The initial naive configuration is illustrated in Figure 3, where

Distance-Vector Routing With SQL

Figure 5: Optimal shortest paths

each node is aware only of the distances to its adjacent neighbours.
Figures 4 and 5 demonstrate the update process during an iteration.
Specifically, Figure 4 illustrates how node 𝐵 communicates its rout-
ing table to nodes 𝐴, 𝐶 , and 𝐸. It should be noted that during each
iteration, each node (in Figure 4, we only consider Node 𝐵) updates
its routing table based on the routing tables it receives from its di-
rect neighbors. The iteration is considered complete when all nodes
have updated their routing tables. Typically, multiple iterations are
required for convergence, as mentioned earlier. On the other hand,
Figure 5 highlights the changes made during the transition, as indi-
cated by the red numbers, in comparison to the initial configuration
in Figure 3. Figure 6 shows the optimal shortest paths for the same
graph in Figure 1.

Figure 6: Optimal shortest paths

The cost tables are symmetric due to the symmetry property of
distance, which states that 𝑑𝑋 (𝑌) = 𝑑𝑌 (𝑋). It is important to note
that the final optimal cost table does not correspond to the optimal
routing table since each node has its own routing table. Rather, the
column maxima over all neighbours𝑉𝑖 in the optimal routing tables
are the final optimal paths.

The runtime depends on the network structure and the number of
iterations required for updates. It is assumed that the number of
iterations is proportional to the number of nodes in the network.
If two nodes in a network are far away from each other, it may
take several iterations for the information to propagate from one
node to the other. For instance, if the maximum number of hops
between two nodes in a network is 3, the algorithm may take at
most 3 iterations to propagate information from one router to an-
other. In the worst case, if the longest hop count between two nodes
is 𝑛 − 1 (where 𝑛 is the total number of nodes in the network), it
may take up to 𝑛 − 1 iterations for the information to reach all
nodes in the network. Therefore, the number of iterations required
for convergence depends on the length of the maximum shortest
path (in terms of hop count and cost) between any two nodes in
the network, which is often referred to as the diameter 𝐷 of the
network [7].
𝐷 is particularly useful in estimating the average runtime of the
Bellman-Ford algorithm in Distance-Vector Routing because the
number of iterations required for convergence is directly propor-
tional to the diameter of the network. Each iteration of the Distance-
Vector Routing algorithm involves checking every edge in each
node’s routing table, resulting in 𝒪(𝑛 · |𝐸 |) operations per itera-
tion. The hop count 𝐷 of the network, representing the longest
number of hops along the shortest paths between any two nodes,
is proportional to the number of iterations required for conver-
gence in Distance-Vector Routing. It is worth mentioning that our
assumption entails parallel computation, whereby each router exe-
cutes updates autonomously, due to the decentralized character of
Distance-Vector Routing. Therefore, the overall time complexity of
the algorithm is𝒪(𝐷 ·𝑛 · |𝐸 |). Since𝐷 is proportional to the number
of iterations, we can write the time complexity as 𝒪(𝐷 · 𝑛 · |𝐸 |) or
𝒪(𝑛2 · |𝐸 |) in the average case, where 𝑛 is the number of nodes in
the network.
During each iteration of the algorithm, every node forwards its
routing table to its neighbours and updates its own routing table
based on the received information. In a network with 𝑛 nodes, each
node has at most 𝑛 − 1 neighbours, and thus, sends and receives
𝑛 − 1 messages in each iteration. In total, 𝒪(𝑛 · |𝐸 |) operations are
performed in each iteration, as each edge in every routing table
is checked. Given that each node potentially updates its routing
table at least once, there are 𝑛 iterations. The worst case scenario
for the Bellman-Ford algorithm in Distance-Vector Routing results
in a runtime of 𝒪(𝑛2 · |𝐸 |). In the best case for Bellman-Ford in
Distance-Vector Routing, initial optimal routing tables require only
a single network iteration, yielding a time complexity of 𝒪(|𝐸 |).

3 PLAN OF ATTACKWITH SQL
To determine the shortest paths from each node to every other node
in a graph using SQL, we first define the schema of the input graph
as 𝑔𝑟𝑎𝑝ℎ(𝑓 𝑟𝑜𝑚, 𝑡𝑜, 𝑣𝑖𝑎, 𝑐𝑜𝑠𝑡). We then perform a recursive query
on the given graph. Here, we explore all possible paths from a node
while cutting off unprofitable paths using window functions. It is
also of great importance to ensure that no cycles occur during this
process.We also record the sum of the costs of the edges recorded by
our explorers. Explorers are sent on a journey to explore all possible
travel routes for the prescribed and legal triples (𝑓 𝑟𝑜𝑚, 𝑡𝑜, 𝑣𝑖𝑎).

Alexej Onken

During their exploration, they log the costs of their travel, including
the stopovers, and compare them with each other at the end. Legal
triples are determined by the requirement of a mandatory first
stopover at a direct neighbour from a starting point. Once the
recursion process is complete, we can extract the shortest paths
for all tuples (𝑓 𝑟𝑜𝑚, 𝑡𝑜) 𝑑𝑋𝑖

(𝑌𝑖) by computing the minimum of the
shortest paths over all legal triples for a specific 𝑑𝑋 (𝑌):

𝑑𝑋,𝑉 (𝑌) = min{𝑑𝑋,𝑉1 (𝑌), . . . , 𝑑𝑋,𝑉𝑛 (𝑌)} = 𝑑𝑋 (𝑌) (2)

An initial sample input table for the Distance-Vector Routing algo-
rithm is depicted in Figure 7. This can be imagined as the collection
of all routing tables in the network stacked on top of each other. Ini-
tially, each router in the network is assumed to only have knowledge
of the costs 𝑐 (𝑋,𝑉𝑖) ≠ ∞ to its immediate neighbours, representing
the most basic state. The via column therefore represents a direct
neighbour 𝑉𝑖 , provided that the cost entry is not infinite. Nodes

Figure 7: Sample input table for SQL graph

that are far away from any reference router, characterized by a
hop count greater than 1, or those for which the entries in the via
column are not equal to the to column, are labeled with a cost value
of infinity (Inf) to indicate their unknown state. The accompanying
graph 𝐺2 is depicted in Figure 8.
We choose this approach to make the Bellman-Ford Equation 1
more intuitive. The recursive part of the Bellman-Ford Equation
is solved using explorers that are sent on the journey from each
legal triple. The non-recursive part (first term in the Bellman-Ford
Equation 1) is solved in a final transformation after the shortest
paths are computed over the converged recursive CTE.
To keep the exponential nature of this approach in check, it is es-
sential to disqualify explorers whose travel costs are too expensive.
This can be achieved using a Branch-and-Bound method by cutting
off and not pursuing the explorers with the highest costs. While this
approach can significantly reduce the number of searched paths
and improve efficiency for finding shortest paths in large networks
with many nodes and edges, it is important to note that there is no
guarantee that the search space will always be reduced.

Figure 8: Sample graph 𝐺2 [6]

4 STRUCTURE OF THE RECURSIVE CTE
The SQL code provided employs a recursive CTE to compute the
shortest paths between routers in an undirected graph. The re-
cursive CTE comprises of two main parts: the non-recursive part
and the recursive part, followed by a final transformation using
the converged recursive CTE. Furthermore, the repository https:
//github.com/jexela/Distance-Vector-Routing-With-SQL contains
the code for generating two sample graphs 𝐺1 and 𝐺2. In addition,
a User-Defined Function (UDF) named array_smallest is pro-
vided, which computes the minimum value from an array. This
repository offers an opportunity to test the SQL implementation.

4.1 Non-Recursive Part
In the non-recursive section of the CTE (base case), we prepare an
appropriate initial table to start the calculation of the shortest paths.
The recursive CTE code can be found on the subsequent page.
Lines 2-8 of the code split legal triples into static and dynamic com-
ponents. The static portion always informs the explorers of their
origin (from), the first mandatory stopover (first_stopover),
and the final destination of their journey (to). The dynamic part, on
the other hand, offers a snapshot to aid orientation during recursion.
Line 8 logs the travel costs to the current stopover. Legal triples
during table initialization are ensured by input graph population,
see Figure 7.
Lines 9-16 generate the previous itinerary. An explorer who reaches
their final destination should record ’FINISHED’ in their travel
log. Otherwise, they should add the current stopover to their previ-
ous itinerary. Lines 17-20 establish the basis for Branch-and-Bound,
which ensures that explorers who have not yet reached their desti-
nation do not have any optimal scores to display, and thus receive a
value of ’infinity’. However, triples where destination=via
can be directly considered as the shortest paths.
Lines 21-25 employ a self-join to guarantee that the costs to the
first mandatory stopover from line 8 are appropriately transferred.
By using the UNION ALL keyword, we can ensure the transition
to the recursive part of the CTE, and since no duplicates are to be
assumed, we can omit UNION for faster execution.

https://github.com/jexela/Distance-Vector-Routing-With-SQL
https://github.com/jexela/Distance-Vector-Routing-With-SQL

Distance-Vector Routing With SQL

1 WITH RECURSIVE exploration as (
2 SELECT g.origin as from,
3 g.destination as to,
4 g.via as first_stopover,
5 g.origin,
6 g.destination,
7 g.via,
8 e.cost as cost_next_hop,
9 CASE WHEN g.destination = g.via
10 THEN array[g.origin] ||
11 array[g.via] ||
12 array['FINISHED']::VARCHAR[]
13 ELSE array[g.origin] ||
14 array[g.via]
15 END as track,
16 e.cost as total_cost,
17 CASE WHEN g.destination = g.via
18 THEN g.cost
19 ELSE 'infinity'
20 END as branch_and_bound
21 FROM graph as g, graph as e
22 WHERE g.origin = e.origin AND
23 g.via = e.via AND
24 e.destination = e.via
25 UNION ALL
26 ...

4.2 Recursive Part

1 ...
2 SELECT
3 .
4 .
5 .
6 CASE WHEN e.to = g.via
7 THEN e.track ||
8 array[g.via, 'FINISHED']
9 ::VARCHAR[]
10 ELSE e.track || array[g.via]
11 END as track,
12 e.total_cost+g.cost as total_cost,
13 array_smallest(
14 array[e.branch_and_bound]::float[] ||
15 array[min(CASE WHEN e.to = g.via
16 THEN e.total_cost+g.cost
17 ELSE 'infinity'
18 END) over win]::float[]
19) as branch_and_bound
20 FROM exploration as e, graph as g
21 WHERE e.via = g.origin AND
22 g.destination = g.via AND
23 'FINISHED' <> ALL(e.track) AND
24 (SELECT cardinality(array_positions(
25 e.track[2:],g.via)
26) < 1) AND
27 e.total_cost <= e.branch_and_bound
28 WINDOW win as (
29 PARTITION BY e.from, e.to, e.first_stopover
30 ORDER BY e.total_cost
31 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
32 FOLLOWING)

Hallo wie geht es dir was geht so bei dir haha haha haha haha ha

Figure 9: Optimize search tree efficiency for 𝐺2 (Figure 8)

The recursive part of the CTE starts by selecting the origin triple
(from, to, first_stopover) from the working table named
exploration and fetching the snapshot (origin,destination,
via) from the input graph. The total cost of the explored path is
calculated along with the travel log in lines 6-12, which is similar
to lines 9-15 in the non-recursive part.
The code between lines 13-20 represents the core of the Branch-
and-Bound method and uses the window function (win) defined
between lines 28-32. Figure 9 depicts the search tree and shows
that, in each recursion stage, for each legal origin triple (from, to,
first_stopover), it is checked within each PARTITION (win-
dows do not cross partitions) whether there are any discoverers who
have reached their final destination (to), enabled by e.to=g.via.
If a discoverer has reached their destination, the total cost is cal-
culated; otherwise, ’infinity’ is set. Then the minimum of all
finished paths of the current recursion level is calculated, and the
winner competes against the previous champion of all recursion
levels, as indicated by array_smallest. The previous winners of
all recursion stages are stored in the branch_and_bound column.
The working table exploration is joined with the input graph,
referred to as graph.

Figure 10: Last transformation after recursion

Alexej Onken

The WHERE statement provides a dual purpose: It not only serves as
a termination condition for the recursive CTE, but also functions as
a filtering mechanism for selecting relevant records. This filtering
process enables the query to explore only the most promising paths,
which have the potential to be lucrative.
The opening condition (line 21) secures that the next step (e.via)
in exploration commences at the vertex (g.origin) extracted
from graph, which in turn provides additional information about
the following adjacent nodes. This ensures the logically correct
chaining of nodes in the graph while the explorer traverses through
the map.
The second condition in line 22 guarantees that ’infinity’ val-
ues are not incorporated, requiring g.destination = g.via
to hold true. The third clause in line 23 validates that the record
does not already have the ’FINISHED’ marker in the track ar-
ray, indicating that the final destination (e.to) has already been
reached by the explorer. The fourth clause (lines 24-26) is responsi-
ble for detecting cycles during the exploration process by checking
whether the next stopover has already been visited. This verifica-
tion is conducted through the travel log (e.track[2:]), starting
from the first mandatory stopover (e.first_stopover) to pre-
vent cycles. Although not necessary, we chose this approach to
make the Bellman-Ford Equation 1 more tangible in our recursive
CTE implementation. Alternatively, we could have started cycle
detection from the beginning of the travel log (e.track[1:]). The
fifth clause in line 27 guarantees that the present exploration path
is not pricier than the best-known path discovered so far. This is
done by modifying the branch_and_bound array, which retains
the smallest total cost of each subpath for each legal origin triple
(from, to, first_stopover, lines 13-19). In this scenario, it is
important to ensure that the total costs of the exploratory paths,
denoted by e.total_cost<=e.branch_and_bound, do not ex-
ceed the upper bound.
Finally, using the converged recursive CTE exploration, the
shortest paths are calculated for all (𝑋𝑖 , 𝑌𝑖) tuples as shown in
Figure 10. To achieve this, a simple query can be constructed by
selecting the exploration table and segmenting (e.from, e.to)
using GROUP BY, and then applying the aggregate function min to
compute the minimum value of the e.total_cost column over
all tuples. Output tables for𝐺1 and𝐺2 can be found on pages 34-35
of the PDF slides (Distance_Vector_Routing_With_SQL.pdf)
in the repository.

5 DISCUSSION AND CONCLUSION
Distance-Vector Routing relies on nodes communicatingwith neigh-
bours and propagating routing tables to determine shortest paths.
E.g., the Routing Information Protocol (RIP) uses Bellman-Ford
algorithm for path calculation. RIP was one of the first Distance-
Vector Routing protocols used on the internet but has since been
largely replaced by more advanced protocols such as Border Gate-
way Protocol (BGP). [1]
The time complexity of the Bellman-Ford algorithm is 𝒪(𝑛2 · |𝐸 |),
where𝑛 is the number of nodes and |𝐸 | is the number of edges in the
graph. The recursive CTE SQL implementation for Distance-Vector
Routing relies on several factors, including: The number of nodes
(𝑛), the average outdegree of the router network (𝑑𝑎𝑣𝑔 , which in

turn depends on the number of edges |𝐸 |), and the number of legal
triples (𝑁𝑙,𝑡𝑟𝑖𝑝𝑙𝑒𝑠) from which the algorithm starts exploring. The
estimated time complexity is 𝒪(𝑛𝑑𝑎𝑣𝑔 · 𝑁𝑙,𝑡𝑟𝑖𝑝𝑙𝑒𝑠), with approxi-
mately 𝑑𝑎𝑣𝑔 possible turns at each intersection during exploration
and a maximum path length of 𝑛 or 𝑛+1 (as in our implementation).
By incorporating techniques such as Branch-and-Bound filtering,
which involves computing upper bounds for each window of le-
gal triples, and cycle detection methods, it is possible to enhance
the performance of the recursive CTE SQL algorithm for Distance-
Vector Routing. However, their effectiveness will depend on the
specific network structure and the costs associated with each path,
which can vary greatly from network to network. As such, it is
difficult to predict the exact impact on runtime. Although not ac-
counted for in the time complexity analysis, it is important to note
that the computations involved in the window functions, implicit
joins and array processings can also be highly time-intensive. An
alternative solution could be a decentralized approach using SQL,
although it has not been obviously addressed in this article.
In contrast, the Bellman-Ford algorithm for Distance-Vector Rout-
ing is a distributed approach that enables each node in the network
to calculate the shortest path to other nodes by only communicat-
ing with its adjacent nodes. This property makes it highly scalable.
On the other hand, the recursive SQL implementation requires a
centralized database and may not be as efficient for larger networks.
Moreover, the Bellman-Ford algorithm is particularly suitable for
networks with dynamic topology changes, as it can quickly adapt
to such changes.
The Bellman-Ford algorithm, unlike the recursive CTE SQL ap-
proach, does not have access to a travel log, which can result in
revisiting nodes multiple times and potentially creating cycles. This
is because the algorithm updates the distance estimate of a node
based on the distance estimates of its neighbours, which in turn can
depend on the distance estimate of the current node. This process
of updating distances is repeated for all nodes in the graph and
can cause the algorithm to revisit nodes whose distance estimates
have already been updated, potentially leading to cycles. Addition-
ally, the travel log in the recursive CTE SQL approach allows us
to see the entire route of the shortest journey from any starting
router to any destination. Besides, when using recursive CTEs, it
is possible to compute shortest paths in a single query, whereas
the decentralized Bellman-Ford approach requires each node to
communicate with its neighbors to update its routing table, leading
to a considerable amount of network traffic.
The Bellman-Ford algorithm can be slow in networks with many
nodes and few connections due to revisiting nodes multiple times,
causing network traffic and performance issues. In contrast, the
recursive CTE SQL approach considers only relevant edges, lever-
aging network sparsity and generating less traffic, making it faster
in some cases. On the flip side, the recursive SQL approach’s expo-
nential nature can be a hindrance in large networks. Furthermore,
it is important to note that the space complexity of the SQL imple-
mentation has not been considered in this analysis, and as such, the
recursive CTE can become very large until it reaches convergence.
Ultimately, the most suitable approach for solving Distance-Vector
Routing problems depends on the specific network structure being
examined.

https://github.com/jexela/Distance-Vector-Routing-With-SQL/blob/main/Distance_Vector_Routing_With_SQL.pdf

Distance-Vector Routing With SQL

REFERENCES
[1] Kate Brush. 2022. Routing Information Protocol. https://www.techtarget.com/

searchnetworking/definition/Routing-Information-Protocol Last Accessed on
March 13, 2023.

[2] The PostgreSQL Global Development Group. 2023. PostgreSQL 14 Documentation:
Common Table Expressions. https://www.postgresql.org/docs/14/queries-with.
html#QUERIES-WITH-RECURSIVE. Last Accessed on March 13, 2023.

[3] C. Hedrick. 1988. Routing Information Protocol. Technical Report. https://tools.
ietf.org/html/rfc1058 Last Accessed on March 14, 2023.

[4] James F. Kurose and Keith W. Ross. March 5, 2012. Computernetzwerke: Der
Top-Down-Ansatz (6 ed.). Pearson Studium. 371–379 pages.

[5] Stefan Savage. [n. d.]. Lecture 8: Routing I - Distance-vector Algorithms. CSE 123:
Computer Networks, University of California, San Diego. https://cseweb.ucsd.
edu/classes/fa11/cse123-a/123f11_Lec9.pdf Last Accessed on March 13, 2023.

[6] Wikipedia. 2023. Distance-vector routing protocol. https://en.wikipedia.org/wiki/
Distance-vector_routing_protocol Last Accessed on March 15, 2023.

[7] Wikipedia. 2023. Network science. https://en.wikipedia.org/wiki/Network_
science Last Accessed on March 19, 2023.

https://www.techtarget.com/searchnetworking/definition/Routing-Information-Protocol
https://www.techtarget.com/searchnetworking/definition/Routing-Information-Protocol
https://www.postgresql.org/docs/14/queries-with.html##QUERIES-WITH-RECURSIVE
https://www.postgresql.org/docs/14/queries-with.html##QUERIES-WITH-RECURSIVE
https://tools.ietf.org/html/rfc1058
https://tools.ietf.org/html/rfc1058
https://cseweb.ucsd.edu/classes/fa11/cse123-a/123f11_Lec9.pdf
https://cseweb.ucsd.edu/classes/fa11/cse123-a/123f11_Lec9.pdf
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol
https://en.wikipedia.org/wiki/Network_science
https://en.wikipedia.org/wiki/Network_science

	Abstract
	1 Introduction
	2 Distance-Vector Routing with Bellman-Ford
	3 Plan of attack with SQL
	4 Structure of the recursive CTE
	4.1 Non-Recursive Part
	4.2 Recursive Part

	5 Discussion and Conclusion
	References

