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ABSTRACT
Though SQL has been Turing complete since the SQL:1999 standard
leveraging this feature to full effect still eludes many developers.
One of the major roadblocks standing the way is the conceptual
impedance mismatch between SQL’s declarative semantics and
the imperative semantics most developers are more familiar with.
Where this becomes most evident is when trying to express com-
plex control flow such as chained assignments, loops, and branches
in a generic manner. In this seminar paper, we introduce techniques
to represent such control flow constructs in plain SQL:1999 and
demonstrate their use by implementing an interpreter for the eso-
teric programming language Befunge.

KEYWORDS
SQL, Befunge, Interpreters, Recursion

1 INTRODUCTION
To the layman, programming languages appear to be magical in-
cantations that allow “computer wizards” to make computers obey
their every whim. This mysticism around programming languages
does not leave novice disciples of programming; the first fact they
learn is that when developing these supposed magical incantations
in any given programming language, they need to adhere to a strict
set of rules. Comprising these rules are two major parts: syntax and
semantics.

Though at first both syntax and semantics appear arbitrary at
best, deeper study reveals the logic behind them. More often than
not programming languages are built around a small set of core
features that dictate the design of their semantics and syntax. For ex-
ample, LISP [8] is built, both semantically and syntactically, around
the concept of list-based symbolic processing.

Not all language design concepts are equally as expressive in all
domains. Take Smalltalk [5], for example, it is a language in which
all code is structured around the concept of objects that interact
with one another. SQL [1] on the other hand is a query language
the main goal of which is to enable developers to query relational
data in a declarative manner.

When evaluating the expressiveness of programming language
design concepts the property of Turing completeness elevates some
languages above others. Though not a necessary property, for a
language to be actually “useful”, it nonetheless allows for gauging

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.

what kinds of programs can be expressed. In short, a Turing com-
plete language can express any problem a Turing machine can solve
and is thus capable of expressing most “sensible” computations.

All the programming languages referenced so far are Turing
complete, this includes the obvious two, LISP and Smalltalk, and
also, maybe surprisingly so, SQL. SQL has been Turing complete
since the introduction of recursive common table expressions (WITH
RECURSIVE) in the 1999 standard [17]. Which allow SQL develop-
ers to express any Turing complete problem in terms of fixpoint
computation.

SQL’s Turing completeness, in theory, allows developers to make
use of textbook algorithms like theDijkstra algorithm or the Edmonds-
Karp algorithm; both of which are algorithms that can be used in
many situations. In practice, however, developers opt to side-step
writing these algorithms in SQL in favor of imperative languages.
This often comes down to the impedance mismatch between the
imperative pseudocode most textbooks depict these algorithms in
and the declarative nature of SQL code.

In this paper, we will flex SQL’s Turing complete muscles by
demonstrating how to translate a Python-based Befunge interpreter
into a single recursive SQL:1999 query in three major steps.

• In Section 2, we will look at what constitutes esoteric program-
ming languages and what Befunge is. In doing so we will also
argue why Befunge is an interesting vehicle for our cause.

• In Section 3, we will deconstruct an imperative Befunge inter-
preter into a general program shape and the individual types of
control flow residing within.

• In Section 4, we will translate the Python-based Befunge inter-
preter into a recursive query; all the while only making use
SQL:1999.

2 ESOTERIC PROGRAMMING LANGUAGES
Amongst all the groups of programming languages in which lan-
guage designers like to claim their creations are Turing complete,
one foregoes the most basic of constraints of making both the
language’s semantics and syntax sensible to read, write, let alone,
reason in and about. Programming languages in this group are
known as esoteric programming languages[3, 6].

One of the earliest examples of such a programming language is
INTERCAL which was written by Don Wood and James Lyon in
1972 and revived by Eric S. Raymond in 1990 [15]. INTERCAL’s sole
design tenet is to satirize as many aspects of other programming
languages as possible. For example, a proper INTERCAL program
must contain an entirely undefined amount of the PLEASE keyword;
too few and the compiler rejects the input program for impoliteness,
too many and the compiler rejects for excessive politeness.

1

https://orcid.org/0000-0002-6625-9627
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Tim Fischer

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

"!dlroW ,olleH">:#v_@
ˆ ,<

(a) Hello World

&>:1-:v v *_$.@
ˆ _$>\:ˆ

(b) Factorial

211p&01p>121p >21g1+21p 11g21g-v>11g21g%#v_v
>|

v,,,,, ,,,.g11"is prime"<
> ˆ > v ˆ <
ˆ_@#-g10p11:+1g11,*25<,,,,,,,,,,,,.g11"is not prime"<

(c) Prime Numbers

Figure 1: A collection of sample programs written in Befunge in increasing complexity.

Some esoteric programming languages take a more minimal
approach, the most well-known examples of this are Wouter van
Oortmerssen’s FALSE [18] and Urban Müller’s Brainfuck [9]. A
simple cat program1in the latter can be written as ,+[-.,+]. Both
make use of a minimal amount of syntactic and semantic constructs
to express arbitrarily complex computations. In short, Brainfuck
simulates a Turing machine in a very direct manner, and FALSE
operates what is known as a stack machine.

Brainfuck especially has become synonymous with esoteric pro-
gramming languages in general. Aside from both its simplicity and
absurdity, a core reason is that it is a Turing complete language [2]
that is fairly direct to be understood as such. This feature has made
Brainfuck the go-to target for reduction arguments concerning Tur-
ing completeness. Any language which can be used to implement a
Brainfuck interpreter, with an “infinite” number of memory cells2,
is, in fact, Turing complete.

2.1 Befunge
Another esoteric programming language that follows in the foot-
steps of the likes of FALSE and Brainfuck is Befunge-93 [12] (from
here on just Befunge). Befunge was invented by Chris Pressey in
1993 with the express intent to be difficult to compile. Befunge is
a Turing complete, stack-based, self-modifying, two-dimensional
language.

Befunge programs are arranged on a 2D character grid, dubbed
the funge space, and each character represents a single command.
At runtime, this funge space is traversed by the program counter,
which can be in one of two execution modes: normal mode and
string mode. During operation in normal mode, each command
character the program counter “lands on” is executed, and any
non-command character is treated as a comment. Some commands
change the travel direction or step length of the program counter,
some interact with the program stack to perform basic calculations
and the like. In string mode, which is toggled by the " character,
the ASCII value of all encountered characters is pushed onto the
stack until the execution mode is toggled back.

In 1998, Pressey sought to extend both the feature set and the
number of dimensions available in Befunge programs. In this pro-
cess, he created then Funge-98 family of languages [13]. Aside
from the newly introduced commands it also lifts the program
size restriction of Befunge-93, which was capped at 80×25 char-
acters. Without this size constraint, it is commonly accepted that

1A cat program is a program that simply copies its standard input to its standard
output.
2In reality this is mostly a soft requirement for the most part, as many languages
limit the program/stack/heap/etc. size artificially. The original Brainfuck reference
implementation limited the number of memory cells to 30000.

1 def interpreter(source):
2 program = preprocess(source)
3 state = make_inital_state(program)

5 while state.mode != " ":

7 match state.mode:
8 case " ": ...
9 case " ": ...

11 match state.direction:
12 case " ": ...
13 case " ": ...
14 case " ": ...
15 case " ": ...

18 return state.result

Figure 2: Python-based skeleton implementation of a Be-
funge interpreterwritten in an iterative style and highlighted
control flow regions.

Befunge-93 is Turing-complete, and with just a few Funge-98 spe-
cific commands it is possible to implement a Brainfuck interpreter
[7].

In this paper, we are working towards showing the expressibility
of Turing-complete control flow in SQL in a direct but fun manner.
And as any Turing-complete language can be used to implement
an interpreter for any other Turing-complete language, this makes
a Befunge3 interpreter a suitable sample program to flex SQL’s
muscles.

3 IMPERATIVE BEFUNGE INTERPRETER
There are many ways to styles of interpreters—tree-walk inter-
preters, bytecode interpreters, graph reduction interpreters, etc.
Befunge lends itself to VM-like interpreters. Such interpreters are
similar in style to bytecode interpreters, in that they emulate very
simple semantics, the difference stems from VM-style interpreters
not needing to compile given programs into bytecode beforehand.
In short, our interpreter will retain the running program in exactly
the form Befunge programs are supplied, in a 2D grid of ASCII
values.

Figure 2 shows a rough sketch of a Befunge interpreter writ-
ten in Python. Though not complete, the missing parts—i.e., the
...-parts—are just more branching, some array-based stack manip-
ulation, and simple integer arithmetic. The translation methods we

3The actual version of Befunge we are targeting is Befunge-93 without the program
size constraint.

2
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Figure 3: Control Flow Graph of the Befunge interpreter with
the control flow regions highlighted respectively.

will discuss extend naturally over those parts as well. Both the com-
plete translation and some Python scripts to make the SQL-based
interpreter more useable can be found on Codeberg4.

The interpreter ingests Befunge source code as a string which
is first transformed into a 2D array for easier access. Afterward,
we prepare the interpreter state which contains the funge space,
the program counter, the stack and the execution mode. This pro-
gram state is then iterated over until the execution mode signals
termination. This iteration follows in two steps; in the first step, the
interpreter ingests and processes the character the program counter
resides on per the current processing mode. In the second step, the
interpreter moves the program counter to the next character based
on either the preexisting movement direction and step width or
possibly updated variants of the two. On program termination, the
interpreter then returns the generated output.

3.1 Concessions to Codd
In preparation for translating the interpreter to SQL, we need to
make some concessions. Though Turing complete, there are some
features that SQL does not and most likely will never support as
they are entirely out of scope for a database query language. The
biggest necessary concession is interactive I/O; Befunge’s input and
output commands usually interact directly with standard input and
standard output, both of which SQL cannot interact with. To meet
halfway our interpreter takes input up-front and returns all output
at once upon completion.

3.2 Types of Control Flow
Out interpreter makes use of three major types of control flow:
straight-line, branching, and looping. The boxes in Figure 2 box
in the individual regions of different control flow and the control
flow graph in Figure 3 illustrates how each of these control flow
regions are linked to one another.

Straight-line control flow pertains to a linear sequence of state-
ments. This can be a series of assignments, bare expressions,
etc.
Branching control flow is, as the name implies, covers all branch-

ing, e.g., conditional branches like if, multiway branches like
switch, etc. Though we will factor out fall-throughs in the latter

4The Git-Repository can be found at https://codeberg.org/timfi/befunge-sql.

1 WITH
2 _1(program) AS (
3 SELECT preprocess(source)
4 ),
5 _2(state) AS (
6 SELECT make_initial_state(program)
7 FROM _1
8 )
9 SELECT ... FROM _1, _2

(a) 1 Consecutive CTEs

1 SELECT ...
2 FROM LATERAL (
3 SELECT preprocess(source)
4 ) AS _1(program),
5 LATERAL (
6 SELECT make_initial_state(program)
7 ) AS _2(state)

(b) 2 Consecutive LATERAL-Joins

1 SELECT preprocess(source) AS program,
2 make_initial_state(program) AS state

(c) 3 Left-Looking Column-Alias-References

Figure 4: Linear control flow in multiple representations in
SQL.

in this paper to keep things simple. For example, Python’s match,
as used in Figure 2, can be used such that it fits this description.
Looping control flow includes all looping constructs—be it

while loops, for loops, for-each loops, you name it. Our inter-
preter only contains one loop and as such it only contains one
region exhibiting non-linear control flow.

4 FLEXING SQL’S MUSCLES
No relational database management system (RDBMS) implements
the entire SQL current standard, so we limit ourselves to the 1999
standard [17]. SQL:1999 introduced both recursive CTEs and lateral
joins; both of which we will make use of to give general trans-
formations for translating imperative control flow to SQL. Most
mainstream RDBMSs today—i.e., PostgreSQL[11], SQL Server[16],
MySQL[10], etc.—implement these two features. In the context of
this work, we will work towards translations to PostgreSQL-style
SQL.

4.1 Straight-Line Control Flow
There are multiple options to represent straight-line control flow
in SQL, we will go through the pros, cons, and availability of three
of these.
1 The first option is to chain the individual statements in the lin-

ear sequence as individual common table expressions(CTEs)—as
illustrated in Figure 4a. Most developers know of this technique
as it is the go-to way to decompose complex queries into simpler
constituent parts.

2 The second option is to make use of LATERAL-joins—as illus-
trated in Figure 4b. These allow query authors to use row and

3
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1 SELECT CASE direction
2 WHEN ' ' THEN ...
3 WHEN ' ' THEN ...
4 WHEN ' ' THEN ...
5 WHEN ' ' THEN ...
6 END CASE

(a) 1 CASE Expressions

1 SELECT ...
2 WHERE direction = ' '
3 UNION ALL
4 SELECT ...
5 WHERE direction = ' '

(b) 2 Mutually Distinct UNION ALL

Figure 5: Branching control flow in multiple representations
in SQL.

column variables inside a table expression from other table
expressions preceding it in the same FROM-clause.

3 The last option is to use left-looking column-alias-references; a
non-standard feature not available in many RDBMS—as illus-
trated in Figure 4c. It allows for LATERAL-esque references to
preceding expressions in the projection list of a SELECT-clause.

From a purely ergonomic perspective 3 left-looking column-
alias-references win by a long shot. Sadly, few large RDBMSs sup-
port them as they are a non-standard feature. Additionally, in most
implementations, there are limitations as to what expressions can
be referenced. For example, in DuckDB [14] one can only reference
aliases bound to what they call “simple expressions”—for example,
this excludes subqueries.

Both 1 CTEs and 2 LATERAL-joins are equally supported by
a very wide set of RDBMSs. There are multiple factors at play
when choosing one over the other. For example, depending on how
performant your RDBMS of choice implements CTEs there may
be performance benefits or drawbacks over LATERAL-joins. In this
paper, we will make use of the LATERAL-join variant due to how it
interacts with the translations of the other two control flow types.

4.2 Branching Control Flow
SQL provides two options for representing branching behavior, one
using SQL’s expression language and one using SQL’s relational
design.

1 SQL’s expression language offers branching control flow in the
form of CASE-expressions as in Figure 5a.

2 Aside from the direct option, pure relational algebra can repre-
sent conditional evaluation as well. Inheriting from set theory,
mutually distinct unions, as illustrated in Figure 5b, allow for
expression of “optional execution”.

Though the more direct solution of the two, 1 CASE-expressions
come with some difficulties depending on the targeted RDBMSs.
The type-checking/-inference systems of some RDBMSs are weak
and require type annotations. Some of these type systems do not
support the ad-hoc generation of complex types in scalar positions,
e.g., row types with named columns.

When trying to make things work out with CASE-expressions
while skirting around the type system limitations, one option is
to “push down” the CASE to each scalar value. But this leads to
subpar performance in most RDBMSs. In contrast, RDBMSs are
exceptional at performing relational workloads like computing 2

mutually distinct unions. Some RDBMSs optimize such workloads

1 WITH RECURSIVE
2 loop(done, ...) AS (
3 SELECT false, ...
4 UNION ALL
5 SELECT ...
6 FROM loop
7 WHERE NOT loop.done
8 )
9 SELECT ...
10 FROM loop
11 WHERE loop.done

Figure 6: Looping control flow represented through a recur-
sive CTE (i.e., WITH RECURSIVE).

in such a manner that the “lazy” behavior of branching control flow
is retained.

4.3 Looping Control Flow
In contrast to the previous two types of control flow, looping control
flow requires Turing completeness and there is only one SQL:1999
option for Turing completeness in SQL: WITH RECURSIVE. Recursive
CTEs consist of two distinct parts, the base case and the recursive
term. Starting from the base case the recursive term is iteratively
applied to the previously produced rows. This iterative application
is performed until no rows are produced, at which point the rows
produced during each iteration are considered the result of the CTE.

Due to WITH RECURSIVEs bare-bone semantics, the only directly
equivalent loops are do-while-loops. As such, translating all other
loop constructs starts with translating them into do-while-notation.
This usually entails adding extra control data like indexes or flags
to the local program state.

There are some performance considerations to take into account
when translating imperative loops to SQL. Depending on how your
underlying RDBMS keeps track of the rows the individual iterations
produce, a lot of data may need to be copied around in memory. A
slight remedy for these performance pains is to keep loop-invariant
and transient data out of the working table.

4.4 Putting It All Together
The translated versions of the three control flow types compose nat-
urally to encapsulate the complex control flow of entire programs.
This composition is accomplished by linking the translations of se-
quential regions together via LATERAL-joins and placing embedded
regions into FROM-clause of their enclosing region. Figure 7 demon-
strates how this composition of individually translated control flow
regions looks like for our skeleton Befunge interpreter introduced
in Figure 2.

Translations of complex imperative programs using these sim-
ple composition rules can be very verbose. Though this verbosity
does not necessarily present problems for developers, the produced
queries can be compacted quite a bit. One such simplification is
to merge straight-line control flow preceding a section of loop-
ing control flow into the base case of the recursive CTE. A more
complicated “simplification” is to preprocess the program such
that all looping control flow is merged into one massive loop, i.e.,
trampolined style [4].

4
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1 SELECT result
2 FROM LATERAL (
3 SELECT preprocess(source)
4 ) AS _1(program),
5 LATERAL (
6 SELECT make_initial_state(program)
7 ) AS _2(state),
8 LATERAL (
9 WITH RECURSIVE
10 loop(done, ...) AS (
11 SELECT false, state.*
12 UNION ALL
13 SELECT next.mode = ' ', next.*
14 FROM loop,
15 LATERAL (
16 SELECT ...
17 WHERE current_state.mode = ' '
18 UNION ALL
19 SELECT ...
20 WHERE current_state.mode = ' '
21 ) AS update,
22 LATERAL (
23 SELECT ...
24 WHERE update.direction = ' '
25 UNION ALL
26 SELECT ...
27 WHERE update.direction = ' '
28 UNION ALL
29 SELECT ...
30 WHERE update.direction = ' '
31 UNION ALL
32 SELECT ...
33 WHERE update.direction = ' '
34 ) AS move,
35 LATERAL (
36 SELECT compose_state(update, move)
37 ) AS next
38 WHERE NOT loop.done
39 )
40 SELECT current_state.result
41 FROM loop
42 WHERE loop.done
43 ) AS _3(result)

Figure 7: Fully translated skeleton as depicted in Figure 2.

5 WRAPPING UP
Writing algorithms and programs in SQL that exhibit complex con-
trol flow can be difficult for a multitude of reasons. First and fore-
most, are the impedance mismatch between the imperative form
many programs are written in and the relational declarative nature
of SQL. Further, some classes of problems are notoriously difficult
to express succinctly in SQL, like optimization problems.

In this paper, though through an unconventional example, we
demonstrated that any imperative program, even Turing-complete
ones, can be expressed in SQL. In the process, we discussed each of
three distinct types of control flow imperative programs exhibit—
straight-line, branching, and looping. And for each of these, we
considered some options for translation to SQL.
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