
cba

B. König-Ries et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2023),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

To Iterate Is Human, to Recurse Is Divine —
Mapping Iterative Python to Recursive SQL

Tim Fischer1

Abstract: Writing complex algorithms and iterative computations in SQL is difficult at best, commonly
leading to code that intermingles looping control flow with database access. This yields programs
with control flow that rapidly hops in and out of the database, with each roundtrip incurring significant
overhead. We present the ByePy compiler, which can compile entire Python functions directly to plain
recursive SQL:1999 queries. By doing so, the compilation eliminates all but a single roundtrip, leading
to runtime speedups of up to an order of magnitude.

Keywords: SQL; Python; Compilation

1 Introduction

The performance of all applications stands and falls with the efficient use of resources, e.g.,
compute, memory, network, etc. In the realm of database-backed applications, developers
can optimize the usage of many, if not most, of these resources by adhering to the decades-old
mantra of database development: “Move your computation close to the data” [RS87]. To do
so, developers need to express their computations and data in a form that databases can
ingest and process. Nowadays, this usually means storing the data in tables and expressing
the computations over it in terms of the ubiquitous SQL.

Following the mantra and moving all computation into the database is often difficult.
The main stumbling block is the impedance mismatch between the declarative paradigm
underlying SQL and the imperative paradigm most developers are more familiar with.
This mismatch leads developers most comfortable with imperative programming to write
programs that perform the bulk of their computation outside the database, i.e., far away
from the data. Such programs are littered with intermittent database access throughout;
consider the implementation of function march in the left half of Fig. 1 (march computes
the outline of a 2D shape). During the execution of such a program, it will have to perform
many complete round trips , i.e., the program’s control flow has to move from Python
to the database and back again . With each additional round trip incurring resource
overhead.

Intending to reach code that behaves like the right side of Fig. 1, that is, minimizing round
trips while retaining the imperative paradigm, Ramachandra et al. introduced Froid
1 Eberhard Karls Universität Tübingen, Wilhelm Schickard Institut tim.fischer@uni-tuebingen.de

https://creativecommons.org/licenses/by-sa/4.0/
mailto:tim.fischer@uni-tuebingen.de

2 Tim Fischer

3

õ
103×

103×
103×

103×

1×

1×

1 @compile
2 def march(start: Vec2i) -> list[Vec2i]: def march(start: Vec2i) -> list[Vec2i]:
3 goal : Vec2i | None = None goal : Vec2i | None = None
4 track : bool = False track : bool = False
5 march : list[Vec2i] = [] march : list[Vec2i] = []
6 current : Vec2i = start current : Vec2i = start
7 while not track or current != goal: while not track or current != goal:
8 square: Squares = SQL(square: Squares = SQL(
9 """ """

10 SELECT s :: squares SELECT s :: squares
11 FROM squares AS s FROM squares AS s
12 WHERE s.xy = $1 WHERE s.xy = $1
13 """, """,
14 [current], [current],
15))

16 dir: Directions = SQL(dir: Directions = SQL(
17 """ """
18 SELECT d :: directions SELECT d :: directions
19 FROM directions AS d FROM directions AS d
20 , (VALUES ($1 :: squares)) AS s , (VALUES ($1 :: squares)) AS s
21 WHERE (s.ll, s.lr, s.ul, s.ur) WHERE (s.ll, s.lr, s.ul, s.ur)
22 = (d.ll, d.lr, d.ul, d.ur) = (d.ll, d.lr, d.ul, d.ur)
23 """, """,
24 [square], [square],
25))

26 if not track and dir.track: if not track and dir.track:
27 track, goal = True, current track, goal = True, current
28 if track: if track:
29 march.append(current) march.append(current)

30 current = Vec2i(current = Vec2i(
31 current.x + dir.dir.x, current.x + dir.dir.x,
32 current.y + dir.dir.y, current.y + dir.dir.y
33))
34 return march return march

Fig. 1: Execution context boundaries between Python 3 and the database õ in iterative code with
embedded queries and code compiled with ByePy.

[Ra17]. Focussing on optimizing simple non-iterative PL/SQL functions by compiling them
to SQL, Froid was restricted to code with linear control flow. Building on this idea, Hirn
and Grust introduced a new compilation approach that extended the compilation to support
non-linear control flow constructs, e.g., loops [HDG20; HG20; HG21]. In [FHG22], we
demonstrated the applicability of this approach to languages other than PL/SQL via ByePy,
a Python frontend for [HG21]. Since then, we have been working on extending the set of
language constructs that ByePy can digest. In addition to the features presented in [FHG22],
it now also supports the following:

• dictionaries with string-valued keys and “JSON-valued” entries,
• delete statements on containers (e.g., del some_list[2:5]),
• falsifiability of builtins (e.g, while some_list: ...),
• nested None disambiguation (e.g, if ... and x is not None and ...: ...), and
• arbitrarily nested (augmented-)assignment (e.g., v[0].my_dict["key"] += 1).

ByePy 3

Type Checking Desugaring Lowering⇝SSA Backend

source codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource codesource code fully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typedfully typed simplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplifiedsimplified

Python 3 AST𝜏 AST𝑠 SSA+SQL SQL õ

Fig. 2: Intermediate representations in the ByePy frontend.

2 The ByePy Compiler

The ByePy compiler consists of two major parts. The first of which is the novel frontend
which compiles Python to a mix of Static Single Assignment form (SSA) to represent the
general control flow and SQL to represent embedded expressions. Furthermore, the second
part consists of the SSA to SQL compilation pipeline elaborated in [HG21].

ByePy focuses on computations over database-resident data; as such, we limit the supported
language features to a subset most commonly used in conjunction with such computation—
think conditionals, loops, flow control statements like break, and complex assignments
like v[0].att += 1. The frontend wrangles Python programs using this subset into the
SSA+SQL representation in three distinct stages, as depicted in Fig. 2, those being
performing soundness and type checking, simplifying particularly complex statements
and expressions, and lowering the AST into the combined SSA+SQL representation.

Type Checking Aside from the conceptual impedance mismatch between the imperative
paradigm of Python and the declarative paradigm of SQL there is a structural impedance
mismatch. Python is a dynamically typed language, meaning types are reified at runtime.
SQL, on the other hand, is statically typed, where types are already explicitly declared
before runtime. To bridge this gap, ByePy implements a type-checking stage that enriches
a minimally typed AST such that each expression is annotated with an appropriate type.
Minimally typed refers to the fact that ByePy requires type annotations in situations where
the type inference does not have enough information—e.g., function parameters, variable
declarations, or function return types.

Desugaring Following the type checking, we rewrite parts of the AST in terms of simpler
syntactic constructs. Doing so simplifies the subsequent steps greatly as it limits the amount
of different syntactic constructs they are required to handle. These rewrites include the
following:

• reducing the set of used operators by rewriting more complicated ones in terms of simpler
one (e.g., x not in y ↦→ not (x in y)),

• placing appropriate “casting expression” where Python’s duck-typing would do so during
runtime (e.g., if some_list: ... ↦→ if len(some_list) > 0: ...),

• replacing stateful expressions with an equivalent series of assignments and variables, and
• rewriting of arbitrarily complex assignments into their simplest equivalents (e.g.,

v[0]["key"] += 1 ↦→ v = [{**v[0], "key": v[0]["key"] + 1}] + v[1:]).

4 Tim Fischer

Frontend Lowering⇝ANF Trampolining Code Generation

iterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterativeiterative gotogotogotogotogotogotogotogotogotogotogotogotogotogotogotogotogoto recursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursiverecursive single loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loopsingle loop with recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursivewith recursive

Python 3 SSA ANF ANF + SQL õ

Fig. 3: Intermediate representations in the ByePy backend.

Lowering⇝SSA The desugaring produces an equivalent AST in which all stateful
computation is expressed solely through single variable assignments and statement-level
control flow. With such an AST in hand, we can finally apply the lowering. In short,
we translate all control flow constructs into equivalent labeled blocks and GOTOs while
translating the remainder directly to equivalent SQL queries.

Once the frontend has compiled all Python specifics away, the backend pipeline designed
by Hirn and Grust comes into play. In short, it applies a series of three transformations
depicted in Fig. 3 which results in an equivalent recursive SQL:1999 query, i.e., a recursive
common table expression (CTE).

Lowering⇝ANF The control flow, which is expressed in terms of SSA, is lowered to
Administrative Normal Form (ANF) using a transformation described by Chakravarty et al.
in [CKZ04]. In short, we turn all blocks into functions, all GOTOs into calls of those functions,
and all assignments into LET-expressions. Of particular note is that the lowering to ANF
places the calls replacing the GOTOs in the tail position.

Trampolining Lowering to ANF, generally, leads to a family of recursive functions. To
facilitate the compilation into the SQL-based CTE form, we subject this family of functions
to the trampoline transformation [GFW99], which yields a single-loop computation that fits
the CTE semantics.

Code Generation The last step is to generate SQL code equivalent to the program in
trampolined ANF. We can do so by encoding LET-expressions as LATERAL-joins, recursive
calls as SELECT-clauses containing the parameters, and conditional expressions as UNIONs of
the individual branches with mutually exclusive WHERE-clauses.

The generated query implements the trampoline through a recursive CTE in which each
recursive step handles one trampoline transition. Thus, all program state resides within
the working table; this includes both the state of the control flow and the bindings of the
program’s live variables. Each recursive step generates a new row representing the result of
the transition, containing both new variable bindings and copies of the unchanged bindings.
This behavior can lead to performance impacts for functions whose local variables carry
sizable data structures—like long arrays. The right edge of Fig. 4a exemplifies this.

ByePy 5

Tab. 1: A collection of Python functions with roundtrips before and speedup after compilation.

Function CC Loops # Runtime (Speedup)
per call after compilation

march track border of 2D object (Marching Squares) 5 q 2000 13% (7.6×)
savings optimize supply chain of a TPC-H order 4 qq qqqq 18 5% (19.5×)
packing pack TPC-H lineitems tightly into containers 9 qq q 45 16% (6.3×)

force 𝑛-body simulation (Barnes-Hut quad tree) 5 q q 126 27% (3.9×)
margin buy/sell TPC-H orders to maximize margin 5 q qq 61 24% (4.2×)
markov Markov-chain based robot control 5 qqq 3000 39% (2.6×)

vm-collatz calculate the collatz conjecture on a simple VM 17 q 67 30% (3.3×)
vm-padovan calculate the padovan sequence on a simple VM 17 q 7100 12% (8.5×)

3 Experimenting with the Divine

We claim that compiling Python to SQL using the ByePy pipeline has the capability of
speeding up programs quite drastically depending on their complexity. This section supports
this claim through eight sample functions with varying complexity and quantifies how the
compilation affects their runtimes. We performed all measurements with PostgreSQL 11.3
and Python 3.8 running on a 64-bit Linux x86 host (2× AMD EPYC™ CPUs at 2.8 GHz, 2
TB of DDR4 RAM). All presented results represent the median of five runs.

Tab. 1 lists the eight sample functions; you can find the original Python source code, compiled
SQL queries, and appropriate data generators on GitHub2. They cover a wide range of use
cases and classes algorithms, e.g., optimization problems over TPC-H data, simulation of
VMs, or algorithms over 2D point data. The columns CC (cyclomatic complexity) and
Loops give some insight into the structure of the functions without looking at the source
code. Especially the latter gives a sense of where the embedded queries (q) sit inside the
functions control flow.

Zooming in on march in Fig. 4a, we can see that the performance of the compiled functions
can be sensitive to the size of the data they operate on. In the lower-left corner, the planning
required for the query outweighs to performance benefits introduced by the compilation.
Fig. 4b shows us the expected effect on the number of roundtrips; increasing the number of
iterations and invocations also increases the round trips a program encounters. Furthermore,
we can also see that compilation significantly decreases the required round trips .

4 Wrapping Up

When working with database-resident data, most Python developers opt to perform complex
computations outside of the database. Embedding database access in (potentially deeply
nested) loops raises significant performance concerns. To minimize the resulting round

2 https://github.com/ByePy/examples

https://github.com/ByePy/examples

6 Tim Fischer

4 8 16 32 64 128 256

4

8

16

32

64

128

256

iteration factor

#
in

vo
ca

tio
n

fa
ct

or

50

42

31

22

19

15

15

32

27

13

15

11

17

9

23

21

13

10

13

10

9

19

15

11

10

9

9

9

15

11

11

10

10

10

10

14

12

11

10

10

10

10

16

15

15

15

15

14

14

(a) Runtime (in % of Python 3)
after compilation

4 8 16 32 64 128 256

101

102

103

104

105

106

#
ro

un
d

tri
ps

iteration factor

/march

0.05 %
1

2000

Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3Python 3

ByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õByePy õ

(b) Comparison of round trips
along the diagonal of Fig. 4a

Fig. 4: Deeper analysis of the runtimes and round trips of the march function.

trips such code experiences during runtime, we developed ByePy; a Python frontend for the
PL/SQL to SQL compilation pipeline described in [HG21]. The compilation yields runtime
speedups of up to an order of magnitude on a wide range of functions, from optimization
problems to stochastic processes.

Currently, we are in the process of introducing PostgreSQL’s geometric types, functions,
and operators as optional extensions to the ByePy dialect. Beyond these extensions, we plan
to expand the set of Python language features ByePy supports. Extensions that appear to be
in immediate reach include things like multi-variable assignments (e.g., a, b = 1, 2)
and comprehensions (e.g., [f(e) for e in some_list if p(e)]). In the not so near
future, we hope to integrate the compilation directly into the @compile decorator, enabling
easier use of ByePy in the wild.

References
[CKZ04] Chakravarty, M. M.; Keller, G.; Zadarnowski, P.: A Functional Perspective on

SSA Optimisation Algorithms. COCV’03/, 2004.
[FHG22] Fischer, T.; Hirn, D.; Grust, T.: Snakes on a Plan: Compiling Python Functions

into Plain SQL Queries. In. SIGMOD ’22, 2022.
[GFW99] Ganz, S. E.; Friedman, D. P.; Wand, M.: Trampolined Style. In. ICFP ’99, 1999.
[HDG20] Hirn, D.; Duta, C.; Grust, T.: Compiling PL/SQL Away. In. CIDR ’20, 2020.
[HG20] Hirn, D.; Grust, T.: PL/SQL Without the PL. In. SIGMOD ’20, 2020.
[HG21] Hirn, D.; Grust, T.: One WITH RECURSIVE is Worth Many GOTOs. In.

SIGMOD ’21, 2021.
[Ra17] Ramachandra, K.; Park, K.; Emani, V.; Halverson, A.; Galindo-Legaria, C.;

Cunningham, C.: Froid: Optimization of Imperative Programs in a Relational
Database. In. VLDB ’17, 2017.

[RS87] Rowe, L.; Stonebraker, M.: The POSTGRES Data Model. In. VLDB ’87, 1987.

