
A Deep Embedding of Queries into Ruby
Torsten Grust 1, Manuel Mayr 2

Department of Computer Science, Universität Tübingen
Tübingen, Germany

1 torsten.grust@uni-tuebingen.de
2 manuel.mayr@uni-tuebingen.de

Abstract—We demonstrate SWITCH, a deep embedding of
relational queries into RUBY and RUBY on RAILS. With SWITCH,
there is no syntactic or stylistic difference between RUBY pro-
grams that operate over in-memory array objects or database-
resident tables, even if these programs rely on array order
or nesting. SWITCH’s built-in compiler and SQL code gener-
ator guarantee to emit few queries, addressing long-standing
performance problems that trace back to RAILS’ ACTIVE-
RECORD database binding. “Looks likes RUBY, but performs
like handcrafted SQL,” is the ideal that drives the research and
development effort behind SWITCH.

I. RUBY ON RUTTED RAILS

RUBY on RAILS (or RAILS, for short) is found among the
most actively deployed frameworks that support the rapid de-
velopment of Web 2.0–style applications [11]. Notable RAILS
applications abound, with GitHub, Qype, Twitter, or Xing
being only a few of those widely recognized on the Web.

A RAILS–built application follows a strict model–view–
controller design pattern [6]. To this end, the RAILS frame-
work provides domain-specific languages (DSLs)—all em-
bedded into the common host language RUBY—that enable
developers to
• specify the application’s call interface, typically in terms

of a REST-ful URL router, [controller]
• design the client-facing presentation and interaction, typ-

ically based on HTML5/CSS/AJAX, and [view]
• to interface with a relational back-end that serves appli-

cation data and holds state information. [model]

This demonstration focuses on RAILS’ model DSL known as
ACTIVERECORD. We refer to recent variants used from RAILS
version 3 onwards, in which ACTIVERECORD is now based
on ACTIVERELATION [1]. We argue that
(1) ACTIVERECORD’s integration into the RUBY syntax,

semantics, and data model, as well as
(2) the runtime interaction of a RAILS application and its

relational database back-end
leave much to be desired. We will demonstrate a new de-
sign, SWITCH, that significantly improves on both aspects.
RUBY’s potential as a host language for database application
development has been identified [10]. We believe that SWITCH
can help to provide an intuitive and efficient environment for
data-intensive programming in RUBY, also for developers who
cannot or do not want to “drop into SQL.” [2]

The subsequent discussion and the software demonstration
itself will revolve around Spree, a versatile RAILS framework

for the construction of Web shops [12]. Spree application data
resides in relational tables whose layout closely resembles the
TPC-H benchmark (Figure 1 shows an excerpt).

A Critique of ACTIVERECORD. Under the regime of
ACTIVERECORD, queries are constructed through the chained
invocation of specific query methods that operate on and return
objects of class ActiveRecord::Relation, RAILS’ primary
query abstraction. These method invocation chains originate
in table objects that directly reflect the base tables present in
the underlying database back-end.1

“What would be the cost of granting a discount on the open
orders of all high-volume costumers?” The code of Figure 2a
is a typical RUBY snippet that answers this question using
ACTIVERECORD’s approach to query embedding. Figure 2b
shows the SQL statements that ACTIVERECORD will derive
from the RUBY snippet. While workable, a number of severe
issues arise:
(1) The RUBY code is sprinkled with literal SQL text frag-

ments (in quotes "· · ·"): the blue fragments in Figure 2b
are copied verbatim from the RUBY source. RUBY values
are spliced in using parameters markers (?, :tc, :s).
Such code is vulnerable to SQL injection attacks [13].

(2) Query methods—like group, select, where—imple-
ment a concatenative semantics of query construction: an
ActiveRecord::Relation object simply gathers query
clauses. Consumption of the query result, e.g. through
the invocation of map (see lines 9 and 11 in Figure 2a),
triggers an attempt to construct executable SQL text from
the clauses gathered so far.

Note how (1) and (2) may easily lead to nonsense queries that
fail at runtime. Further:
(3) Query construction is not as compositional as the SQL

semantics: ACTIVERECORD often constructs sequences
of separate SQL statements and uses the RUBY heap
to carry sizable intermediate from query to query (see

1Following a RAILS convention, a RUBY table object named 〈T〉 (singular)
is instantiated for any base table named 〈T〉s (plural). Looking at Figure 1,
the RAILS application will refer to table objects Order, Line

¯
Item, etc.

Orders

id user
¯
id item

¯
total · · ·

Line
¯
Items

id price quantity order
¯
id · · ·

Fig. 1. Tables holding Spree application data (excerpt). The id columns serve
as primary keys, order

¯
id references Orders.

1 discount = 20.0/100 # grant a 20% discount ...
2 high_vol = 10 # ... to customers with more than 10 open orders
3

4 high_vols = Order.group("user_id")
5 .having(["COUNT(user_id) >= ?", high_vol])
6 .select("user_id")
7

8 open_orders = Order.where(["user_id IN (:tc) AND state = :s",
9 { tc: high_vols.map(&:user_id),

10 s: "O" }])
11 items = open_orders.includes(:Line_Item).map(&:line_items).flatten
12

13 cost = items.sum {|i| i.price * i.quantity} * discount

(a) RUBY code written in ACTIVERECORD–style. The red code
fragments are not considered to be database-executable.

1 SELECT user_id
2 FROM Orders
3 GROUP BY user_id
4 HAVING COUNT(user_id) >= 10;
5

6 SELECT *
7 FROM Orders
8 WHERE user_id IN (

714 user ids︷ ︸︸ ︷
4,7,. . .,1498,1499)

9 AND state = ’O’;
10

11 SELECT *
12 FROM Line_Items
13 WHERE order_id IN (

6124 order ids︷ ︸︸ ︷
1,2,. . .,59973,59974);

(b) SQL statement sequence generated for the RUBY
snippet of (a). Blue code is copied verbatim.

Fig. 2. ACTIVERECORD variant of the “discounting open orders” program. Intermediate results are carried from SQL statement to SQL statement via the
RUBY heap (714+6124 integers are copied for a TPC-H instance of scale factor 0.01).

1 discount = 20.0/100
2 high_vol = 10
3

4 high_vols = Order.group_by(&:user_id)
5 .select {|u,os| os.length >= high_vol}
6 open_orders = high_vols.map {|u,os| os.select {|o| o.state == "O"}}
7 .flatten
8 items = open_orders.map {|o| line_item.in_order(o)}.flatten
9

10 cost = items.sum {|i| i.price * i.quantity} * discount

(a) RUBY code written in array-processing style. The entire code
fragment is considered database-executable by SWITCH.

1 SELECT SUM(li.price * li.quantity) * 0.2
2 FROM (SELECT o2.user_id, COUNT(*) AS cnt
3 FROM Orders AS o2
4 GROUP BY o2.user_id) AS oc,
5 Orders AS o1,
6 Line_Items AS li
7 WHERE o1.id = li.order_id
8 AND o1.state = ’O’
9 AND oc.user_id = o1.user_id

10 AND oc.cnt > 10;

(b) SWITCH–generated SQL statement for the code
snippet of (a). [Formatted for readability.]

Fig. 3. SWITCH’s deep query embedding admits a natural comprehension-style formulation of the program of Figure 2a.

the arrows and the resulting huge IN (· · ·) clauses
in Figure 2b which may easily overwhelm the back-end’s
SQL parser).

(4) Query results are post-processed by the RUBY interpreter
although the relational back-end would be capable of
performing the entire computation close to the source
data. In Figure 2a, red code fragments are evaluated by
RUBY instead of the database query processor.

II. SWITCH

SWITCH aims to provide a significantly more natural em-
bedding of relational queries, leading RUBY onto new rails.
We derive an expression tree representing the source RUBY
program while the program executes. This tree is compiled into
SQL statement text, executed on the database back-end, and the
resulting table materialized on the RUBY heap in terms of an
array of hashes. While we obviously cannot unroll all SWITCH
design details here, we highlight a few defining features in this
section.

A. Embedding Queries into Ruby

RUBY’s consequent adoption of an open object model and
its lenient syntactic conventions in which even basic control
constructs are subject to runtime inspection and modification,
make the language an ideal host for embedded DSLs. One
recent example in the database arena is BLOOM, a RUBY-
embedded DSL for distributed programming [3].

Deep Embedding. SWITCH realizes a deep embedding [8]
of relational queries: there is no syntactic or stylistic differ-
ence between RUBY programs that operate over in-memory
array objects or database-resident tables. SWITCH captures
the program’s structure in preparation for query generation.
Developers continue to use the host language’s versatile family
of array operations (found in the RUBY modules Array
and Enumerable). The set of SWITCH–supported operations
includes
map select group_by sort_by partition uniq

flatten flat_map zip all? any? none? empty?

one? member? append reverse take drop take_while

drop_while at first last length avg sum max min

max_by min_by,
as well as arithmetics, comparisons, and Boolean opera-
tions. SWITCH respects array order and supports computation
over nested arrays (which naturally arise with group_by or
partition, for example). SWITCH’s coverage of operations
goes significantly beyond other RUBY database bindings, like
DATAMAPPER, SEQUEL, or AMBITION [5].

Taking advantage of SWITCH’s deep query embedding, Fig-
ure 3a shows the array-centric reformulation of the program
of Figure 2a. Vanilla RUBY block syntax {|x|· · ·} may now be
used to specify operation arguments. Pattern matching, as used
in the block expression {|u,os| os.length >= high_vol}
(line 5), handily names and accesses the fields of a record—
note that the second field os represents a nested Array object
(here: an array of orders). RUBY idioms, e.g. shorthands

1 SELECT SUM(li.price * li.quantity) * (20.0/100) AS cost
2 FROM Orders AS o1,
3 Line_Items AS li
4 WHERE o1.id = li.order_id
5 AND o1.user_id IN (SELECT o2.user_id
6 FROM Orders AS o2
7 GROUP BY o2.user_id
8 HAVING COUNT(*) > 10)
9 AND o1.state = ’O’;

Fig. 4. “Discounting open orders”: handcrafted SQL text (also see col-
umn SQL (0) in ?? ??).

TABLE I
QUERY EXECUTION TIMES

TPC-H Scale (sec)

ACTIVERECORD SWITCH SQL (0)

0.001 0.814 0.053 0.007
0.01 8.112 0.176 0.044
0.1 81.290 0.893 0.595
1 DNF 11.910 12.162

10 DNF 128.016 119.794
DNF: overwhelms SQL parse buffer

Query execution times against Spree data derived from TPC-H instances of
growing size. (Linux 2.6, 2.93 GHz Intel XeonTM, 70 GB RAM, SCSI disk,
running IBM DB2 v9.)

for block invocation (&:user_id ≡ {|x| x.user_id}), re-
main available. SWITCH also embraces user-defined meth-
ods written in the same array-centric style: the singleton
method in_order(), invoked in line 8 and defined as

class << line_item = Line_Item
def in_order(o) select {|li| o.id == li.order_id} end
end

encapsulates the 1-to-n association between the Spree ta-
bles Orders and Line

¯
Items, for example.

Abstract Interpretation. SWITCH discovers the structure of
the source program through a variant of abstract interpreta-
tion [4] that we tailored to fit the RUBY execution model.
SWITCH remains fully portable and does not intrude the RUBY
interpreter or parser (as AMBITION [5] does, for example). In a
nutshell, blocks {|x|e(x)} are invoked with crafted parameter
objects that form an expression tree of all operations applied
to them while the RUBY runtime evaluates expression e and
its subexpressions. The actual value of e is only computed
once SQL code generation and execution has been performed.
In this respect, SWITCH bears resemblance with LINQ [9].

B. SQL Code Generation

Parts of SWITCH’s compiler back-end for RUBY’s array op-
erations loosely follow the translation principles introduced by
FERRY [7]. SWITCH relies on a new code generator designed
to emit compact and readable SQL text. Code generation
exploits SQL:1999 features like common table expressions
(WITH), lazily forms full-select blocks only when the lack
of compositionality in SQL:1999 forces it to, and avoids to
sequentially ship the SQL text in a piece-by-piece fashion
as we have observed with ACTIVERECORD in Figure 2b

SQL text
data

...

3
00

0
×

(a) ACTIVERECORD.

tim
e

SQL text
data

(b) SWITCH.

Fig. 5. Context switches and shipment of queries/result data between the
Ruby runtime and the database back-end (against a TPC-H instance of scale
factor 0.1).

(also see Section II-C). SWITCH turns the RUBY program of
Figure 3a into the SQL statement of Figure 3b.

Query Performance. Deep query embedding and SQL code
generation can still lead to competitive query performance.
SWITCH–generated code can often contend with manually
written SQL as we will demonstrate using a diversity of
query classes and use cases taken from Spree and elsewhere
(Section III). To make this point here, ?? ?? reports on an
experimental comparison of SWITCH’s SQL output with
(1) the SQL statement sequence generated by ACTIVE-

RECORD 3.0.5 as well as
(2) a handcrafted query variant—see Figure 4 and col-

umn SQL (0) in ?? ??.
All measurements include the time required to materialize the
query results on the RUBY heap.

The experiment indicates a performance gap of two orders
of magnitude if ACTIVERECORD is compared to SWITCH or
handcrafted SQL. Beyond this (admittedly shallow) “faster is
better” assessment, for Spree application data derived from a
TPC-H instance of scale factor of 1 or larger, ACTIVERECORD
overflows IBM DB2 statement heap with SQL text of more
than 107 characters (due to huge IN (· · ·) clauses, see Sec-
tion I) and thus fails to scale.

C. Busy But Bored Stiff — Shipping Fewer Queries

With ACTIVERECORD, the size of the database instance
can affect the size of the generated SQL text. Worse, though,
the database size may also determine the number of SQL
queries generated. ACTIVERECORD partially addresses this
phenomenon, also known as the 1+n query problem, but
RAILS still suffers [1, see includes()].

Consider the following RUBY piece that uses ACTIVE-
RECORD to build a nested array of all orders together with
their contained line items:

orders = Order.includes(:line_items)
orders.map {|o| [o.id, o.line_items.order("price")] }

Although we used includes() to materialize the associa-
tion [1], ACTIVERECORD still issues a separate SQL query per
order. A flood of simple look-alike queries2 keeps the back-
end busy and the overall execution time is dominated by costly
context switches between the RAILS and database processes
which repeatedly exchange SQL text and (tiny) pieces of data
(see the illustration in Figure 5a).

Execution of the equivalent SWITCH formulation

Order.map {|o|
{ order: o.id,
items: line_item.in_order(o).sort_by(&:price) }}

leads to a radically different interaction with the database
back-end: independent of the database instance size, exactly
two SQL queries will be executed. One of these queries
retrieves all rows of table Line

¯
Items in one go, tagging the

rows such that an item’s associated order object and the item’s
array offset are available to the RUBY process. The execution
of these two queries may overlap arbitrarily (Figure 5b).

More generally, SWITCH guarantees to issue exactly n inde-
pendent SQL queries to compute a result whose type features
n Array classes. For the above example, the result type reads
Array〈Integer,Array〈Line_Item〉〉, thus two queries are
issued.

III. DEMONSTRATION SETUP

The software demonstration looks at SWITCH from the
angles of a RAILS developer as well as a database programmer
knowledgeable in SQL.

Trading ACTIVERECORD
for SWITCH. SWITCH may
be used as a drop-in
replacement for the query
functionality offered by
ACTIVERECORD. We will
demonstrate a live Spree
Web shop instance in which
code fragments have been
adapted to use SWITCH. This will range from RAILS-typical
code that populates HTML pages with database information
to extensive pieces of RUBY code that have formerly not
been considered database-executable (shopping cart checkout
and payment). With SWITCH, new types of queries and
functionality are easily expressed in RUBY and then added to
Spree. We will demonstrate OLAP–style queries that perform
credit card fraud analysis over Spree payment records.

Interactive SWITCH Shell.
RUBY is an interpreted lan-
guage that comes with an
interactive shell (irb), en-
abling developers to experi-
ment with snippets of code.

2For every single order id 〈o〉, ACTIVERECORD issues the SQL statement
SELECT * FROM Line_Items WHERE order_id =〈o〉 ORDER BY price.

SWITCH is as interactive as RUBY and we will provide an irb
instance in which ad-hoc SWITCH-based programs may be
formulated and executed. A specific to_sql() method allows
the inspection of the SQL code that SWITCH generates. The
(performance) advantage that comes with database-supported
data-intensive programming—as opposed to ACTIVERECORD
and traditional on-RUBY-heap array processing—is particu-
larly easy to demonstrate in this interactive environment.

Try SWITCH. The demon-
stration will be hosted on
a laptop computer that ad-
ditionally acts as a lo-
cal wireless LAN hotspot
such that multiple users
can try SWITCH indepen-
dently. For any mobile web-
enabled device (e.g. iOS-
based or Android phones)

this provides access to the Spree shop instance mentioned
above. In addition, we will serve a web-based application that
offers an irb-like interactive RUBY shell. Canned example
programs are prepared but users may also formulate and
evaluate their own queries. Optional pop-ups show the SQL
code that is generated behind the scenes.

ACKNOWLEDGMENT

This research is supported by the German Research Council
(DFG) under grant no. GR 2036/3-1.

REFERENCES

[1] ACTIVERECORD Query Interface. api.rubyonrails.org.
[2] R. Agrawal et al. The Claremont Report on Database Research. CACM,

52(6), 2009.
[3] P. Alvaro, N. Conway, J.M. Hellerstein, and W.R. Marczak. Consistency

Analysis in BLOOM: a CALM and Collected Approach. In Proc. CIDR,
2011.

[4] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In Proc. POPL, 1977.

[5] DATAMAPPER, SEQUEL, AMBITION. Database Toolkits for RUBY.
rubygems.org.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1994.

[7] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-Safe LINQ Compi-
lation. In Proc. VLDB, 2010.

[8] P. Hudak. Modular Domain Specific Languages and Tools. In Proc.
ICSR, 1998.

[9] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Objects,
Relations and XML in the .NET Framework. In Proc. SIGMOD, 2006.

[10] A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden,
and M. Stonebraker. A Comparison of Approaches to Large-Scale Data
Analysis. In Proc. SIGMOD, 2009.

[11] Ruby on Rails: Web Development that Doesn’t Hurt. rubyonrails.org.
[12] Spree: Open Source E-Commerce for Ruby on Rails. spreecommerce.

com.
[13] G. Wassermann and Z. Su. Sound and Precise Analysis of Web

Applications for Injection Vulnerabilities. In Proc. PLDI, 2007.

