
FERRY — Database–Supported Program Execution

Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber
WSI, Universität Tübingen

Tübingen, Germany˙firstname.lastname¸@uni-tuebingen.de

ABSTRACT
We demonstrate the language Ferry and its editing, com-
pilation, and execution environment FerryDeck. Ferry’s
type system and operations match those of scripting or pro-
gramming languages; its compiler has been designed to emit
(bundles of) compliant and efficient SQL:1999 statements.
Ferry acts as glue that permits a programming style in
which developers access database tables using their pro-
gramming language’s own syntax and idioms—the Ferry-
expressible fragments of such programs may be executed by
a relational database back-end, i.e., close to the data. The
demonstrator FerryDeck implements compile-and-execute-
as-you-type interactivity for Ferry and offers a variety of
(graphical) hooks to explore and inspect this approach to
database-supported program execution.

Categories and Subject Descriptors: H.2.3 [Database
Management]: Languages—Query Languages, Database
(persistent) programming languages

General Terms: Languages, Performance

Keywords: Ferry, Pathfinder, LINQ, SQL:1999

1. DATABASE–TROUBLED VS.
DATABASE–SUPPORTED PROGRAMS

Friday, late afternoon. “Oh, and we need your program
to extract the two top-paid employees and their salaries per
department.” Does this request spoil your weekend plans?
Your answer may also depend on whether you are developing
in a database-troubled or a database-supported programming
environment:

A© Database-troubled: ODBC-style database access.

Employees
id name dept salary
1 Alex DE 300
2 Bert DE 100
3 Cora DE 200
4 Drew US 200
5 Erik US 400
6 Fred US 300
7 Gina US 200
8 Herb NL 600
9 Ivan NL 400

10 Jill UK 500

Figure 1: Table
Employees.

The request suggests the construc-
tion of a data structure in which
each department is associated with
the list of its two top-paid employ-
ees. Figure 1 shows the source
database table Employees. While
the host language (here: C) sup-
ports such data nesting, the under-
lying 1NF relational database does
not. Your ODBC-based program
(Figure 2) thus embeds two SQL
query strings defining (a) an outer
query depts (line 8) over whose re-

Copyright is held by the author/owner(s).
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

1 〈. . . 25 lines of code suppressed. . . 〉
2 SQLPrepare(emps, "\
3 SELECT name,salary FROM Employees WHERE dept = ? \
4 ORDER BY salary DESC FETCH FIRST 2 ROWS ONLY", . . .);
5 SQLBindCol(emps, 1, . . ., name, 4+1, . . .);
6 SQLBindCol(emps, 2, . . ., &salary, 0, . . .);
7 SQLBindParameter(emps, 1, SQL_PARAM_INPUT, . . ., dept, . . .);
8 SQLExecDirect(depts, "SELECT DISTINCT dept FROM Employees", . . .);
9 SQLBindCol(depts, 1, . . ., dept, 0, . . .);

10

11 rc = SQLFetch(depts);
12 while (rc != SQL_NO_DATA_FOUND) {
13 SQLExecute(emps);
14 rc = SQLFetch(emps);
15 while (rc != SQL_NO_DATA_FOUND) {

16 〈process bound variables dept, name, salary here〉
17 rc = SQLFetch(emps);
18 }
19 SQLCloseCursor(emps);
20 rc = SQLFetch(depts);
21 }

Figure 2: ODBC code excerpt (host language: C).

sults you iterate to obtain bindings for column dept, and
(b) an inner query emps (line 2) that uses these bindings to
retrieve columns name, salary for the two top-paid employees
in the respective department.

In effect, the two nested while loops of your program
take on parts of the query processor’s job, submitting the
inner query once for each distinct value in column dept, i.e.,
four times. Code length approaches 100 lines (Figure 2 sup-
presses ODBC connection management, handle allocation,
and also omits error handling). You have used a significant
subset of the ODBC API (9 different functions appearing in
17 call sites). Tedious plumbing dominates and you still end
up with fragile, insidious code (note how outer and inner
query use the stack address of C variable dept to communi-
cate bindings, lines 7 and 9) that cannot be fully checked at
compile time due to ODBC’s reliance on query strings.

B©Database-supported program execution.Your script
(here: Ruby, Figure 3) reads list Employees whose contents
reflects the rows of table Employees of Figure 1 [1]. Ruby
method group_by groups the employees by department and
variable d_es is bound to a nested list of shape [(dept,[(id,
dept,name,salary)])]. You use two nested Ruby map in-
vocations (line 3) to project on name, salary in the inner
lists and then sort the latter by descending salary before you
trim to only retain the first two elements (sort_by, first
in line 4).

Your program largely relies on built-in Ruby functions
whose semantics may be understood in terms of disciplined
iteration (or comprehensions [7]). You thus know that your
programming environment will translate a large fragment

1 〈objects in Employees have methods id, name, dept, salary〉
2 d_es = Employees.group_by {|e| e.dept}
3 d_ns = d_es.map {|d,es| [d, es.map {|e| [e.name, e.salary]}]}
4 top2 = d_ns.map {|d,ns| [d, ns.sort_by {|n,s| -s}.first(2)]}

5 〈result in top2 (list of shape [(dept,[(name,salary)])])〉

Figure 3: Ruby script.

1 let e = table Employees (id int, name string,
2 dept string, salary int)
3 with keys ((id))
4 in for x in e
5 group by x.dept
6 return p(the (x.dept), q

7 take (2, for y in zip (x.name, x.salary)
8 order by y.2 descending
9 x return y)) y

Figure 4: Ferry sample Program P1 , to be evaluated
against the database table Employees of Figure 1.

of your code into Ferry, a language that—like Ruby—
operates over nested, ordered lists but can be compiled into
(bundles of) SQL:1999 statements. This program fragment
will be executed by the database back-end, close to the
Employees table, releasing the Ruby runtime from this data
processing task. Weekend saved.

2. THE FERRY GLUE LANGUAGE
Ferry has been designed as an intermediate language

onto which a variety of front-end scripting or programming
languages can be mapped. Ferry’s type system, opera-
tions, and function library support computation, in particu-
lar iteration, over arbitrarily nested, ordered lists and tuples.
All data manipulated by Ferry programs is shaped accord-
ing to the recursive type equation t = a | [t] | (t, . . . , t)
where a represents atomic types like string , int , or bool .
These types t model programming language types such as
lists, (associative) arrays, or dictionaries (the Ferry type
[(int , [string])] can represent a string hash with integer keys,
for example).

Ferry features a fully orthogonal expression-oriented syn-
tax that revolves around the for-where-group by-order by-
return construct. Figure 4 shows the Ferry sample Pro-
gram P1 which realizes the semantics of the Ruby script
fragment of Figure 3. The principal comprehension expres-
sion for x in e1 return e2 performs the side-effect-free iter-
ated evaluation of expression e2 under successive bindings
(supplied by e1) of variable x. Ferry comes equipped with
a library of built-in functions (Figure 5) that has been in-
spired by Haskell’s standard prelude [5]. A typical Ferry
program chains functions that consume and produce lists to
realize more complex functionality.

The language design builds on Ferry’s nested list types
to provide a natural and powerful form of grouping [7]:
in the scope of the group by clause (marked by p

x
q
y in Fig-

ure 4), expression x.salary is of type [int], representing all
salaries in the current group. The result of Program P1 has
type [(string , [(string , int)])] and reads

[("DE", [("Alex", 300), ("Cora", 200)]),
("US", [("Erik", 400), ("Fred", 300)]),
("NL", [("Herb", 600), ("Ivan", 400)]),
("UK", [("Jill", 500)])] .

This nested value is mapped back onto the Ruby heap to
be bound to variable top2 (Figure 3, line 4).

The resemblance of Ferry’s for-where-group by-order by-
return block with XQuery’s flwor syntax is not acci-

map :: (t � t1, [t]) � [t1] map over list
concat :: [[t]] � [t] list flattening

take, drop :: (int , [t]) � [t] keep/remove list prefix
nth :: (int , [t]) � t positional list access
zip :: ([t1], . . , [tn]) � [(t1, . . , tn)] n-way positional

unzip :: [(t1, . . , tn)] � ([t1], . . , [tn]) merge and split
unordered :: [t] � [t] disregard list order

length :: [t] � int list length
all, any :: [bool] � bool quantification

sum, min, max :: [a] � a list aggregation
the :: [t] � t group representative

groupWith :: (t � (a1, . . , am), [t]) � [[t]] grouping (as in [7])

Figure 5: Sample of Ferry’s built-in function library.

f
e
r
r
y
c

p
f

Host: Ruby,

Python, C#, . . .

Ferry
program

Ferry core
program

Typed
Ferry core

(Un)boxed
Ferry core

Algebraic
program

5©

SQL:1999

0©

1©
2© 3©

4©

6©

Figure 6: Ferry compilation stages and intermediate
program forms.

dental as both languages are built on a common semantic
ground: list comprehensions [7]. Comprehensions are found,
under varying coats of syntactic sugar, in a growing fam-
ily of languages (e.g., C# 3.0, Erlang, Haskell, Perl 6,
Python, Scala, Ruby). Indeed, a comprehension-based
core is characteristic of the languages that may be under-
stood in terms of Ferry and thus executed with database
support.

Compiling Ferry to SQL. To derive database-execu-
table code from a Ferry program, Ferry’s compiler ferryc
applies an adaptation of the loop lifting translation strat-
egy [2]. Loop lifting, originally developed for the purely re-
lational Pathfinder XQuery compiler, yields compact al-
gebraic query plans for input programs that feature ordered
iteration, conditionals, variable bindings and reference, etc.
Loop-lifted algebraic plans facilitate data-flow-based analy-
sis and optimization and rely on a particularly simple table
algebra variant, designed to model the query engine capa-
bilities of modern RDBMS.

Figure 6 sketches the resulting compilation pipeline. In
stages 4© and 5©, ferryc employs Pathfinder’s optimizer
and code generator pf [2] to translate algebraic plans into
SQL statement bundles ready for execution by the back-end.

3. STEERING THE FERRY (DEMO SETUP)
FerryDeck implements a fully interactive editing, com-

pilation, execution, and inspection environment for Ferry
(Figure 7 shows a screen shot of FerryDeck taken while we
experimented with Program P1). The demonstrator Fer-
ryDeck hooks into (a) stages 1© to 6© of Figure 6, (b) the
shipment of SQL:1999 code for execution by the back-end
(IBM DB2 V9.5 in this case), and (c) the assembly of the
final result to be mapped back onto the programming lan-
guage heap. Views may be flexibly rearranged to peek at the
various intermediate forms a compiled Ferry program takes
on. Live syntax checks and updates of all views, including
the database-computed query result, are performed while

Figure 7: Screen shot of FerryDeck taken while processing P1 . As you type, FerryDeck translates the input
program and continuously updates views of the compiled program, plan bundle, emitted SQL code, and result.

users edit their Ferry programs. With loop lifting, ferryc
relies on a compositional compilation strategy that does not
break when facing large or deeply nested programs. (This
submission is accompanied by a three-minute screencast.)

Visualizing plan bundles. To implement its nested data
model on 1NF database back-ends, Ferry represents nested

Q1

iter pos namesalary
1 1 Alex 300
1 2 Cora 200
2 1 Erik 400
2 2 Fred 300
3 1 Herb 600
3 2 Ivan 400
4 1 Jill 500

Q0

iter pos deptbox
1 1 DE 1
1 2 US 2
1 3 NL 3
1 4 UK 4

Figure 8: Table pair represent-
ing Program P1 ’s nested result.

lists by surrogate
keys (see surro-
gate 2, column box,
Figure 8) [6]. For
each list construc-
tor [t] occurring
in a program’s re-
sult type, Ferry
generates a sepa-
rate algebraic plan
computing the par-

tial result at that nesting level. This dependency on type is
in contrast to Scenario A© of Section 1 where the data de-
termined the number of issued queries. The programming
language runtime benefits from this plan bundling as it can
consume Ferry results gradually at different levels or par-
tially only. FerryDeck users can easily experience the ef-
fects if they let their program “open boxes” (i.e., inspect a
nested list’s actual elements) selectively. FerryDeck per-
forms prompt PDF re-rendering of plan bundles (Figure 7,
right) and users see bundles dynamically grow or shrink as
they alter the nesting expressed by their programs.

Preserving order on an unordered back-end. Loop
lifting embeds information on iteration and list order in the
data (columns iter, pos, Figure 8) [2]. While this explicit
encoding of order does incur runtime cost, the compiler is
provided with effective handles to selectively enforce or omit
order maintenance: if FerryDeck users edit a program to
locally ignore order, e.g., via the introduction of a call to
built-in function unordered(·) (Figure 5), they can imme-
diately notice a global reduction of plan complexity.

SQL:1999 code generation and execution. Ferry’s
code generator pf turns an algebraic plan into a bundle
of SQL:1999 statements that collectively realize the plan’s
semantics. FerryDeck lets users browse the statement
groups as well as their individual tabular results (cf. Q0,

Q1 of Figure 8) as computed by IBM DB2 V9.5. Addition-
ally, the demonstrator merges the tables to provide the host
language’s view of a potentially deeply nested value.

Ferry and Linq. Ferry and its library of built-in func-
tions embrace the Standard Query Operators of Microsoft’s
Linq [4], another member of the family of comprehension-
based languages. With its SQL code generator, Ferry makes
for an ideal option to realize an alternative, non-proprietary
Linq-to-SQL provider. Ferry leaps ahead with data-flow-
based join detection that helps to avoid the iterative eval-
uation of nested database queries. Each such iteration en-
tails an execution context switch from programming lan-
guage runtime to database query processor and back—a
phenomenon found in Linq execution traces. Microsoft’s
current Linq-to-SQL provider organizes and accesses the
elements of nested lists by table offsets (here, Linq relies
on specific Microsoft SQL Server behavior that can guar-
antee ordered row storage and permits positional access).
Ferry’s treatment of data nesting is not tied to charac-
teristics of a particular database back-end and thus brings
any SQL:1999 RDBMS within reach of the Linq technology.
The demonstration features FerryDeck and a Linq GUI
(LinqPad [3]) side by side to make the opportunities in this
space tangible.

Acknowledgments. This research has been supported by
the German Research Association (DFG), Grant GR 2036/1.

4. REFERENCES
[1] ActiveRecord. http://ar.rubyonrails.org.

[2] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts.
In Proc. VLDB, 2004.

[3] LinqPad. http://www.linqpad.net/.
[4] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling

Objects, Relations, and XML in the .NET Framework. In
Proc. SIGMOD, 2006.

[5] S. Peyton Jones. The Haskell 98 Language. Journal of
Functional Programming, 13(1), 2003.

[6] H.J. Schek and M.H. Scholl. The Relational Model with
Relation-Valued Attributes. Information Systems, 11(2),
1986.

[7] P. Wadler and S. Peyton Jones. Comprehensive
Comprehensions: Comprehensions with “Order by” and
“Group by”. In Proc. ICFP Haskell Workshop, 2007.

